地球科学进展 ›› 2007, Vol. 22 ›› Issue (2): 126 -135. doi: 10.11867/j.issn.1001-8166.2007.02.0126

研究论文 上一篇    下一篇

糜棱岩化过程中矿物变形温度计
向必伟,朱 光,王勇生,谢成龙,胡召齐   
  1. 合肥工业大学资源与环境工程学院,安徽 合肥 230009
  • 收稿日期:2007-01-01 修回日期:2007-01-01 出版日期:2007-02-10
  • 通讯作者: 向必伟(1977-),男,湖北汉川人,博士研究生,主要从事韧性剪切带研究.E-mail: xiang121212@sina.com E-mail:xiang121212@sina.com
  • 基金资助:

    国家自然科学基金项目“晓天—磨子潭断裂的演化对大别造山带折返的指示”(编号:40602025)资助.

Mineral Deformation Thermometer for Mylonitization

XIANG Bi-wei,ZHU Guang,WANG Yong-sheng,XIE Cheng-long,HU Zhao-qi   

  1. College of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009,China
  • Received:2007-01-01 Revised:2007-01-01 Online:2007-02-10 Published:2007-02-10

对有效确定中—低温下糜棱岩变形温度一直以来都没有比较理想的方法,而在研究韧性剪切带过程中对其变形温度的确定又常是必不可少的。根据近年来国际上对天然石英、长石、方解石等矿物变形的研究成果,总结了利用矿物变形指示变形温度的方法。在不同的温度条件下,长石与石英的变形方式具有阶段性,其变形与动态重结晶型式与温度具有明显的对应关系。石英变形中的滑移系及其C 轴组构图主要受变形温度的控制。低温变形中的方解石e 双晶纹形态也与温度呈密切的相关性。观测这些矿物变形的显微构造,可以很好地估计韧性剪切带糜棱岩化过程中的变形温度。

There has been no ideal means to constrain deformation temperatures of mylonites developed under low-moderate temperature conditions. However, it is necessary to determine the deformation temperature in studies of ductile shear zones. Based on new research achievements about the deformation of minerals, such as feldspar, quartz and calcite, this paper summaries approaches for estimating deformations temperatures by mineral deformation phenomena. Under different temperature conditions, deformations of feldspar and quartz show different stages, and their deformation and types of dynamic recrystallisation are closely related to temperatures. Slip systems and C-axis patterns of quartz as well as calcite e twin also exhibit differences with increasing temperatures. Microstructures of the minerals in mylonites can be used as thermometers to determine deformation temperatures.

中图分类号: 

[1]Walshe J L. A six-component chlorite solid solution model and the systems[J]. Economical Geology,1986, 81: 681-703.
[2]Essene E J. The current status of thermobarometry in metamorphic rocks[J].American Mineralogist,1989, 74: 1-44. 
[3]Hoish T D. A muscovite-biotite geothermometer[J]. American Mineralogist,1989, 74: 565-572.
[4]Mancktelow N S, Pennacchioni G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004, 26: 47-69.
[5]Passchier C W, Trouw R A J. Micro-tectonics[M]. Springer-verlag Berlin Heidelberg,1996:36-45.
[6]Stipp M, Stünitz H, Heilbronner R, et al. The eastern Tonale fault zone: A  natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology,2002, 24:1 861-1 884.
[7]Sibson R H. Fault rock distribution and structure within the Alpine fault zone: A preliminary account[J]. Bulletin of the Royal Society of New Zealand,1999, 18:55-66.
[8]Van D. Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition[J]. Tectonophysics,1999, 303: 83-107.
[9]Hirth G, Tullis J. Dislocation creep regimes in quartz aggregates[J]. Journal of Structural Geology,1992,14:145-159.
[10]Neil S Mancktelow. The influence of grain boundary fluids on the microstructure of Quartz-feldspar Mylonites[J]. Journal of Structural Geology,2004,26: 47-69.
[11]White S H. Geological significance of recovery and recrystallization processes in quartz[J]. Tectonophysics,1977, 39: 143-170.
[12]Drury M R,Urai J L. Deformation-related recrystallization processes[J]. Tectonophysics,1990, 172:235-253.
[13]Schofield D L, Dlemos R S. Relationship between syn-tectonic granite fabric and regional P-T-t-d paths: An example from the Gander-Aralon boundary of NE Newfounelland[J]. Journal of Structural Geology,1998, 30:459-471.
[14]Lister G S, Dornsiepen U F. Fabric transitions in the Saxony granulite terrain[J]. Journal of Structural Geology,1982, 41: 81-92.
[15]Law R D. Crystallographic fabrics: A selective review of their applications to research in structural geology[C]//Knipe R J, Rutter E H, eds. Deformation Mechanisms, Rheology and Tectonics. Geological Society Special Publication, 1990, 54: 335-352. 
[16]Bouchez J L. Plastic deformation of quartzites at low temperatures in an area of natural strain gradient[J]. Tectonophysics, 1997, 39: 25-50.
[17]Mainprice D, Bouchez J L, Blumendeld P. Domiant c-slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature[J]. Geology, 1986, 14: 819-822.
[18]Tullis J, Yund R A. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures[J]. Geology, 1987, 15:606-609.
[19]Pryer L L. Microstructures in feldspars from a major crustal thrust zone: The Grenville Front, Ontario, Canada[J]. Journal of Structural Geology, 1993, 15: 21-36.
[20]Borges F S, White S H. Microstructural and chemical studies of sheared anorthosites, Roneval, South Harris[J]. Journal of Structural Geology, 1980, 2: 237-280.
[21]Gapais D. Shear structures within deformed granites: Mechanical and thermal indications[J]. Geology, 1989, 17:1 144-1 147.
[22]Gates A E, Glover L. Alleghanian tectono-thermal evolution of the dextral transcurrent hylas zone, Virginia Piedmont, USA[J]. Journal of Structural Geology, 1989, 11:407-419.
[23]Tullis J, Yund R A. Diffusion creep in feldspar aggregates: Experimental evidence[J]. Journal of Structural Geology, 1991, 13: 987-1 000.
[24]Vidal J L, Debat P, Soula J C. Ddformation and dynamic recrystallization of K-feldspar augen in orthogneiss from montagne Noire, Occitania, Southern France[J]. Lithos,1980, 13: 247-255.
[25]Olsen T S, Kohlstedt D L. Natural deformation and recrystallization of some intermediate plagioclase feldspars[J]. Tectonophysics, 1985, 111: 107-131.
[26]Hay R S, Evans B. Chemically induced grain boundary migration in calcite: Temperature dependence, phenomenology, and possible applications to geologic systems[J]. Contributions to Mineralogy and Petrology, 1987, 97: 77-87.
[27]Rosenberg C L. Deformation and recrystallization of plagioclase along a temperature Gradient: An example from the Bergell tonalite[J]. Journal of Structural Geology, 2003, 25: 389-408.
[28]Yund R A, Tullis J. Compositional changes of minerals associated with dynamic recrystallization[J]. Contributions to Mineralogy and Petrology, 1991, 97: 346-355.
[29]Lafrance B, John Barbara E, Frost B R. Ultra high-temperature and subsolidus shear zones: Examples from the Poe Mountain anorthosite, Wyoming[J]. Journal of Structural Geology, 1998, 20: 945-955.
[30]Anderson D J, Lindsley D H, Dabidson P M. QUILF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz[J]. Computers and Geosciences,1993, 19: 1 333-1 350.
[31]Altenberger U. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway[J]. Tectonophysics, 2000, 320: 107-121. 
[32]Ferrill D A, Morris A P, Evans M A,et al. Calcite twin morphology: A low-temperature deformation geothermometer[J]. Journal of Structural Geology, 2004,26:1 521-1 529.
[33]Zhu Guang, Xie Chenglong, Wang Yongsheng, et al. Characteristics of the Tan-Lu high-Pressure strike-slip ductile shear zone and its 40Ar/39Ar dating[J]. Acta Petrologica Sinica, 2005, 21(6): 1 687-1 702.
[34]Wang Yongsheng, Zhu Guang, Chen Wen, et al. Thermochronologic information from the Tan-Lu fault zone and its relationship with the exhumation of the Dabie Mountains[J]. Geochimica, 2005, 34(3): 193-214. [王勇生, 朱光, 陈文,等. 郯庐断裂带热年代学信息及其与大别造山带折返的关系[J]. 地球化学, 2005, 34(3): 193-214.]
[35]McDougall I, Harrison T M. Geochronology and Thermochonology by the 40Ar /39Ar Method[M]. New York: Oxford University Press, 1998.
[36]Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40(30): 259-174.
[37]Harrison T M. Diffusion of 40Ar in hornblende[J]. Contributions to Mineralogy and Petrology, 1981, 78: 324-331.
[38]Reddy S M, Kelley S P, Magennis L. A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat-Haramosh Massif, western Himalaya[J]. Contributions to Mineralogy and Petrology, 1997, 128: 16-29.
[39]Zhu Guang, Niu Manlan, Liu Guosheng, et al. 40Ar/39Ar Dating for the strike-slip movement on the Feidong Part of the Tan-Lu Fault belt[J]. Acta Geologica Sinica,2005, 79(3):303-316. [朱光, 牛漫兰, 刘国生,等.郯庐断裂带肥东段走滑运动的40Ar/39Ar 法定年[J]. 地质学报, 2005, 79(3):303-316.]
[40]Zhu Guang, Wang Yongsheng, Liu Guosheng, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone,East China[J]. Journal of Structural Geology, 2005, 27(8):1 379-1 398.
[41]Zhu Guang, Wang Daoxuan, Liu Guosheng,et al. Extensional activities along the Tan-Lu fault zone and its geodynamic setting[J]. Scientia Geologica Sinica,2001, 36(3):269-278. [朱光, 王道轩, 刘国生,等. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学, 2001, 36(3):269-278.]

[1] 李国平, 李山山, 黄楚惠. 高原切变线与高原低涡相互作用的研究现状与展望[J]. 地球科学进展, 2017, 32(9): 919-925.
[2] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[3] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[4] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[5] 李春峰,苏 新,姜 涛,Ujiie K, Fabbri O, Yamaguchi A,Chester F M,Kimura G. 日本南海海槽俯冲增生楔前缘的构造变形特征[J]. 地球科学进展, 2010, 25(2): 203-211.
[6] 戴朝成,郑荣才,朱如凯,翟文亮,高红灿. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 2009, 24(2): 172-180.
[7] 秦养民,谢树成,顾延生,王军霞,周修高. 第四纪环境重建的良好代用指标——有壳变形虫记录与古生态学研究进展[J]. 地球科学进展, 2008, 23(8): 803-812.
[8] 吴兆福,高飞,陶庭叶. 小波变换后的噪声信息在大坝变形监测精度评定中的应用[J]. 地球科学进展, 2008, 23(6): 590-594.
[9] 黄润秋,黄 达. 卸荷条件下岩石变形特征及本构模型研究[J]. 地球科学进展, 2008, 23(5): 441-447.
[10] 巨能攀,赵建军,邓辉,黄润秋,段海澎. 黄山高速滑移弯曲边坡变形机理分析及应急治理对策[J]. 地球科学进展, 2008, 23(5): 474-481.
[11] 林舸;赵重斌;张晏华;王岳军;单业华. 地质构造变形数值模拟研究的原理、方法及相关进展[J]. 地球科学进展, 2005, 20(5): 549-555.
[12] 黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3): 292-297.
[13] 钟锴;徐鸣洁;王良书;丁增勇;徐震. 利用航磁、重力资料研究川滇地区大陆变形特征[J]. 地球科学进展, 2005, 20(10): 1089-1094.
[14] 张仲培;王清晨. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展, 2004, 19(4): 605-613.
[15] 聂德新. 岩质高边坡岩体变形参数及松弛带厚度研究[J]. 地球科学进展, 2004, 19(3): 472-477.
阅读次数
全文


摘要