地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 203 -211. doi: 10.11867/j.issn.1001-8166.2010.02.0203

所属专题: IODP研究

IODP研究 上一篇    下一篇

日本南海海槽俯冲增生楔前缘的构造变形特征
李春峰 1,苏  新 2,姜  涛 3,Ujiie K 4, Fabbri O 5,Yamaguchi A 6,Chester F M 7,Kimura G 6   
  1. 1.同济大学海洋地质国家重点实验室,上海  200092;
    2.中国地质大学海洋学院,北京  100083;
    3.中国地质大学海洋科学与工程系,湖北  武汉  430074;
    4.Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan;
    5.University of Franche-Comte, 25030 Besancon, France;
    6.Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan;
    7.Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA
  • 收稿日期:2009-12-16 修回日期:2010-01-15 出版日期:2010-02-10
  • 通讯作者: 李春峰 E-mail:cfl@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“日本南海海槽俯冲增生楔前缘的构造变形分析——兼与马尼拉俯冲带的对比”(编号:40876022);国家重点基础研究发展计划项目子课题“南海新生代大陆边缘的构造演化模式”(编号:2007CB411702);国家高技术研究发展计划重点课题“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Deformation at the Front of the Accretionary Prism of the Nankai Trough, Japan: Evidence from Core Samples

Li Chunfeng 1,Su Xin 2,Jiang Tao3,Ujiie K 4, Fabbri O 5, Yamaguchi A 6,Chester F M 7,Kimura G 6   

  1. 1.State Laboratory of Marine Geology, Tongji University, Shanghai  200092, China;
    2.School of Ocean Sciences, China University of Geosciences, Beijing  100083, China;
    3.Department of Ocean Sciences and Engineering, China University of Geosciences, Wuhan  430074, China;
    4.Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan;
    5.University of Franche-Comte, 25030 Besancon, France;
    6.Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan;
    7.Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA
  • Received:2009-12-16 Revised:2010-01-15 Online:2010-02-10 Published:2010-02-10
  • Contact: LI Chun-Feng E-mail:cfl@tongji.edu.cn

对增生楔不同压力—温度条件下的构造变形、流体活动、沉积特征、岩石物性和化学组成等多方面的直接观测,可以帮助分析俯冲带地震的蕴育和发生的环境与机理。通过参加IODP的日本南海海槽发震带研究项目(NanTroSEIZE)第一阶段316航次所收集到的大量第一手数据和资料,分别在4个站位上(C0004,C0006,C0007,C0008)对日本南海海槽增生楔前缘岩芯尺度上的构造变形进行了详细分析,并且讨论了岩芯尺度上的构造变形与增生楔中大尺度的非序列分支逆冲断层和前缘逆冲断层的构造变形之间的关系。发现逆冲变形不是只在大尺度的逆冲断层面上进行,而是弥散分布在主逆冲断层面、次级逆冲断层面以及断层面之间的更小的尺度上。小尺度构造的倾向与大尺度断层的倾向有较好的一致性,表明它们是在相同的应力场下所形成的。在增生楔浅部高角度的正断层比较发育,显示张性应力场特征,同时所获得的岩芯尺度上的地层倾角较大并倾向与反射地震以及区域地质分析结果非常吻合,而在深部,特别是在大尺度逆冲断层发育带附近,各种类型的断层、滑移变形带、节理等非常普遍,同时层理与劈理的产状的复杂变化更多地受控于复杂的逆冲断层带的作用。

Direct observations and measurements on deformational and sedimentary structures, fluid activities, physical properties, and chemical compositions of core samples from accretionary prisms at different pressure and temperature settings are critical to understanding seismogenic mechanisms of subduction zone earthquakes. Based on core measurements from IODP expedition 316 of the first stage of the NanTroSEIZE program, we analyze deformational and sedimentary structures at the core scale at four sites, C0004, C0006, C0007 and C0008, at the toe the accretionary prism along the Nankai Trough. We also discuss the relationships between structures at the core scale and large scale structures like splay fault and frontal thrust fault. It is found that thrusting deformation in the accretionary prism is accommodated not only by deformation within large-scale thrusting zones, but also by deformation along secondary thrusts and potentially more importantly along core-scale structures such as micro-faults and deformation bands. The consistencies in dipping angles between large scale thrusts and core-scale structures indicate that structures at different scales are formed under a unified stress field within the accretionary prism. At the shallow part of the accretionary prism, high angle normal faults dominate, showing extensional stress field, and beddings and fissilities from core samples show trends and high dips consistent with those estimated from seismic stratigraphy and regional structures. At deeper parts, particularly near the large scale thrusts, faults of all types, joints and deformation bands are common features, and beddings and fissilities show vertiginous attitudes controlled preferably more by large scale thrusting deformation.

中图分类号: 

[1] Lay T, Kanamori H, Ammon C J, et al. The great Sumatra-Andaman earthquake of 26 December 2004[J].Science,2005, 308(5 725): 1 127-1 133.
[2] Tao Chunhui, Dai Liming, Sun Yao, et al. Summary on the tectonic setting of the area around Indonesia where earthquake tsunami happened[J].Journal of Marine Sciences,2008,26(2):59-66. [陶春辉,戴黎明,孙耀,等,印尼附近海域地震海啸发生的构造背景综述[J].海洋学研究,2008,26(2):59-66.]
[3] Tobin H J,Kinoshita M. Investigations of seismogenesis at the Nankai Trough, Japan[Z]. IODP Scientific Prospectus, NanTroSEIZE Stage 1. doi:10.2204/iodp.sp.nantroseize1.2006, 2006.
[4] Kimura G, Screaton E J, Curewitz D, et al. NanTroSEIZE Stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts[R]. IODP Preliminary Reptort, 316. doi:10.2204/ iodp.pr.316.2008, 2008.
[5] Park J O, Tsuru T, Kodaira S, et al. Splay fault branching along the Nankai subduction zone[J].Science,2002, 297(5 584):1 157-1 160.
[6] Li Sanzhong,Guo Xiaoyu,Hou Fanghui,et al. Interactions of ridge-plume[J].Plume-trench and Trench-ridge,2004, 20(11): 6-18.[李三忠, 郭晓玉, 侯方辉, 等. 活动大陆边缘的板片窗构造[J]. 海洋地质动态, 2004, 20(11): 6-18.]
[7] Ruff L, Kanamori H. Seismic coupling and uncoupling at subduction zones[J].Tectonophysics, 1983,99(2/4): 99-117.
[8] Honza E. Spreading mode of backarc basins in the western Pacific[J].Tectonophysics,1995, 251:139-152.
[9] Yao Bochu, Zeng Weijun, Hayes D E, et al. The Geological Memoir of South China Sea Surveyed Jointly by China and USA[M].Wuhan: China University of Geosciences Press,1994:1-204.[姚伯初,曾维军,Hayes D E, 等.中美合作调研南海地质专报[M]. 武汉:中国地质大学出版社,1994:1-204.]
[10] Li Chunfeng, Zhou Zuyi, Li Jiabao, et al. Precollisional tectonics and terrain amalgamation offshore southern Taiwan: Characterizations from reflection seismic and potential field data[J].Science in China (Series D), 2007, 50(6):897-908.[李春峰,周祖翼,李家彪,等. 台湾岛南部海域的前碰撞构造地球物理特征[J]. 中国科学:D辑,2007,37(5): 649-659.]

[1] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[2] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[3] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
[4] 李永祥,鄢全树,赵西西,全体船上科学家. 剥蚀型汇聚板块边缘大地震成因机理研究:来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
[5] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[6] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[7] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[8] 吴婷婷,李三忠,庞洁红,王健,戴黎明,IODP Expedition 324 Scientific Party. IODP 324航次FMS成像测井资料处理及其在Shatsky海隆构造研究中的应用[J]. 地球科学进展, 2010, 25(7): 753-765.
[9] 赵青,赵其华,彭社琴,陈近中,黄河清. 某水电站坝区高地应力释放现象及成因研究[J]. 地球科学进展, 2009, 24(6): 636-642.
[10] 陈木宏. 国际综合大洋钻探计划IODP323白令海航次介绍[J]. 地球科学进展, 2009, 24(12): 1352-1356.
[11] 田军. 新生代的气候节律:赤道太平洋IODP-320、321航次[J]. 地球科学进展, 2009, 24(12): 1357-1361.
[12] 刘志飞,拓守廷. IODP计划的新进展[J]. 地球科学进展, 2009, 24(12): 1318-1324.
[13] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[14] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[15] 王家生,高钰涯,李清,杨翠萍,陈祈,魏清,王晓芹,胡高伟. 沉积物粒度对水合物形成的制约:来自IODP 311航次证据[J]. 地球科学进展, 2007, 22(7): 659-665.
阅读次数
全文


摘要