Please wait a minute...
img img
高级检索
地球科学进展  2007, Vol. 22 Issue (7): 659-665    DOI: 10.11867/j.issn.1001-8166.2007.07.0659
IODP研究     
沉积物粒度对水合物形成的制约:来自IODP 311航次证据
王家生,高钰涯,李清,杨翠萍,陈祈,魏清,王晓芹,胡高伟
中国地质大学地球科学学院,生物地质与环境地质教育部重点实验室,湖北 武汉 430074
Grain Size Constraint on Gas Hydrate Occurrence: Evidence from Sediment Size during IODP 311
WANG Jia-sheng, GAO Yu-ya, LI Qing, YANG Cui-ping, CHEN Qi, WEI Qing, WANG Xiao-qin, HU Gao-wei
Faculty of Earth Sciences, Key Laboratory of Biogeology and Environmental Geology of Ministry of Eduction, China University of Geosciences, Wuhan 430074,China
 全文: PDF(1788 KB)  
摘要:

对取自IODP 311航次(东北太平洋Cascadia大陆边缘)所有5个站位、采样间距约为1.5 m的614件沉积物样品,利用Beckman Coulter LS-230激光粒度仪进行了沉积物粒度分析,获得了沉积物粒度随深度变化特征,进而与水合物层位的替代指标进行了位置对比,这些指标包括特殊沉积构造(soupy和mousse-like构造)、测井数据(LWD)推算出来的水合物饱和度(Sh)、岩芯红外图像和实际钻取的含水合物沉积物等。发现沉积物粒度分别为31~63 μm和63~125 μm的2组较粗粒径的沉积物数量变化增多的位置与水合物出现层位之间存在较好的位置对应关系。如在U1326站位海底以下5~8 m、21~26 m、50~123 m、132~140 m、167~180 m、195~206 m、220~240 m深度位置出现了沉积物粒度明显偏向粗粒的趋势,而这些位置正好对应于大多数特殊沉积构造出现的深度,也对应于水合物饱和度(Sh)值相对较高的深度,并与一些实际钻取的赋含水合物的浊积沙层观察结果一致。因此,初步研究后认为,沉积物粒度在水合物形成过程中扮演了重要角色,天然气水合物可能偏向形成于粒度大于31 μm的粗粒沉积物中。

关键词: 沉积物粒度水合物制约IODP 311    
Abstract:

A total of 614 sediment samples at an interval of about 1.5 m from all 5 sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on Cascadia Margin, northwestern Pacific were analyzed using a Beckman Coulter LS-230 Particle Analyzer. The grain-size data were then plotted against depth and compared with other potential proxies of gas hydrate-occurrence such as soupy/mousse-like fabrics in sedimentary textures, gas hydrate concentration (Sh) derived from LWD data using Archie’s relation, IR core images (infrared image) and the recovered samples of gas hydrate-bearing sediments. A good relationship was found between the distribution of coarse grains (sizes 31~63 μm and 63~125  μm) and the potential occurrence of gas hydrate across the entire gas hydrate stability zone (see the yellow zones in following 5 diagrams).
For example, the depth distribution of grain size from the Site U1326 shows clear excursions at depths of 5~8, 21~26, 50~123, 132~140, 167~180, 195~206 and 220~240 mbsf. They coincide with the potential occurrence of gas hydrate indicated by soupy/mousse-like structures, logging-derived gas hydrate concentrations (Sh) and the recovered samples of the gas hydrate bearing sand layers.
Therefore, sediment-size may have played a role in the concentration of gas hydrate. Gas hydrate occurs preferentially in relatively coarse-grained sediments (>31 μm in grain size).

Key words: Constraint    IODP 311.    Grain size of sediments    Gas hydrate
收稿日期: 2007-05-22 出版日期: 2007-07-10
:  P7361.21+3  
基金资助:

国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030);国家自然科学基金项目“古海洋天然气水合物背景下沉积物识别”(编号:40472063);国家地质学理科基地人才培养基金;中国地质大学(武汉)创新人才基金联合资助.

通讯作者: 王家生(1963-),男,浙江慈溪人,教授,博士生导师,主要从事海洋地质和水合物研究.E-mail: js-wang@cug.edu.cn     E-mail: js-wang@cug.edu.cn
作者简介: 王家生(1963-),男,浙江慈溪人,教授,博士生导师,主要从事海洋地质和水合物研究.E-mail: js-wang@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈祈
王家生
李清
王晓芹
胡高伟
魏清
杨翠萍
高钰涯

引用本文:

王家生,高钰涯,李清,杨翠萍,陈祈,魏清,王晓芹,胡高伟. 沉积物粒度对水合物形成的制约:来自IODP 311航次证据[J]. 地球科学进展, 2007, 22(7): 659-665.

WANG Jia-sheng, GAO Yu-ya, LI Qing, YANG Cui-ping, CHEN Qi, WEI Qing, et al . Grain Size Constraint on Gas Hydrate Occurrence: Evidence from Sediment Size during IODP 311. Advances in Earth Science, 2007, 22(7): 659-665.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2007.07.0659        http://www.adearth.ac.cn/CN/Y2007/V22/I7/659

[1]Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrate[C]//Paull C K, Dillon W P, eds. Natural Gas Hydrate: Occurrence, Distribution and Detection. Washington DC: American Geophysical Union, 2001:3-18.
[2]Ginsburg G, Soloviev V, Matveeva T, et al. Sediment grain-size control on hydrate presence, sites 994, 995 and 997[C]//Paull C K, Matsumotor R, Wallace P J, eds. Proceeding of ODP Inital Reports 164.College Station TX: Ocean Drilling Program, 2000: 237-245.
[3]Kraemer L M, Owen R M, Dickens G R. Lithology of the upper gas hydrate zone, Blake outer ridge, a link between diatoms, porosity, and gas hydrate[C]//Paull C K, Matsumotor R, Wallace P J,eds. Proceeding of ODP Inital Reports 164. College Station TX: Ocean Drilling Program, 2000: 229-236.
[4]Su Xin, Song Chengbing, Fang Nianqiao. Vairation in grain size of sediments above BSR and correlation with the occurrence of gas hydrates on Hydrate Ridge, East Pacific[J].Earth Science Frontiers,2005,12(1):234-242.[苏新,宋成兵,方念乔. 东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J].地学前缘, 2005, 12 (1): 234-242.]
[5]Pinero E, Gracia E, Martinez-Ruiz F, et al.Gas hydrate disturbance fabrics of southern hydrate ridge sediments (ODP Leg 204): Relationship with texture and physical properties[J].Geo-Marine Letters, 2007,DOI: 10.1007/s00367-007-0077-z.
[6]Riedel M, Collett T S, Malone M J, et al.Methods[C]//Riedal M, Collett T S, Malone M J,eds. Proceedings of the Intergrated Ocean Drilling Program, 311 Expert Reports, Cacadia Margin Gas Hydrates.IODPMI/USIO, Texas A & M University, 2006:1-76.
[7]Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J].American Insititute of Mining, Metallurgica and Petroleum Engineers,1942,146:54-67.
[8]Collett T S. Well log evaluation of gas hydrate saturations[C]//SPWLA 39th  Annual Logging Symposium. Houston (SPWLA), 1998.
[9]Collett T S, Ladd J. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data[C]//Paull C K, Matsumoto R, Wallace P J, eds. Proceeding of ODP, Science Results, 164. College Station, TX (Ocean Drilling Program), 2000:179-191.
[10]Tréhu A M, Long P E, Torres M,et al.Three-dimensional distribution of gas hydrate beneath Southern Hydrate Ridge: Constraints from ODP Leg 204[J].Earth Planet Science Letters,2004,222:845-862.

[1] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[2] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[3] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[4] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[5] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[6] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[7] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[8] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[9] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[10] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[11] 蒲毅彬,吴青柏,蒋观利. 封闭系统中多孔介质甲烷水合物的CT实验研究[J]. 地球科学进展, 2007, 22(4): 362-368.
[12] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520.
[13] 陈忠,颜文,陈木宏,王淑红,肖尚斌,陆钧,杨华平. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4): 394-400.
[14] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
[15] 吴能友,陈弘,蔡秋蓉,王宏斌. 科学大洋钻探与天然气水合物[J]. 地球科学进展, 2003, 18(5): 753-758.