地球科学进展 ›› 2007, Vol. 22 ›› Issue (7): 666 -672. doi: 10.11867/j.issn.1001-8166.2007.07.0666

所属专题: IODP研究

IODP研究 上一篇    下一篇

新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果
李祥辉 1,陈云华 2,徐宝亮 2,Akihiro Kano 3, Chizuru Takashima 3   
  1. 1.南京大学地球科学系,江苏 南京 210093;2.成都理工大学沉积地质研究院,四川 成都 610059;3.Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Japan
  • 收稿日期:2007-05-22 修回日期:2007-06-23 出版日期:2007-07-10
  • 通讯作者: 李祥辉(1964-),男,四川万源人,教授,主要从事沉积地质、古海洋学研究和教学工作.E-mail: lixh@cdut.edu.cn E-mail:lixh@cdut.edu.cn
  • 基金资助:

    国家自然科学基金项目“北大西洋Porcupine Seabight冷水碳酸盐泥丘氧碳同位素研究”(编号:40643017);国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030)联合资助.

A Review of Cenozoic Deep Sea Coldwater Carbonate Mounds and Prileminary Results of Cabon and Oxygen Isotopes from IODP 307

LI Xiang-hui 1, CHEN Yun-hua 2, XU Bao-liang 2, Kano Akihiro 3, Takashima Chizuru 3   

  1. 1. Department of Earth Sciences, Nanjing University, Nanjing 210093, China;2. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;3 Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Japan
  • Received:2007-05-22 Revised:2007-06-23 Online:2007-07-10 Published:2007-07-10

记述了新生代深海冷水碳酸盐泥丘近期的9个重要研究事件;总结了冷水泥丘具有全球海洋(大陆斜坡为主)分布、形态各异、冷水枝状珊瑚构筑泥丘的特点;介绍了冷水泥丘形成的(地质流体渗流和微生物作用)内因及(海底牵引底流作用)外因两种主要观点。对2005年IODP 307航次实施的北大西洋Porcupine Seabight冷水泥丘大洋钻探工作初步成果进行了编译,公布了中国科学家在碳氧同位素方面的初步实验结果。实验结果显示上新世中期以来的2 Ma里冷水碳酸盐泥丘启动和发育过程中存在2次碳氧同位素偏移事件(I和II),碳氧同位素偏移事件I与泥丘的启动相呼应,暗示北大西洋古海洋气候发生巨大变化,可能与北极冰盖极盛有关。

Some research events, chacteristics and causes of deep sea coldwater carbonate mounds are reviewed, and prelimary results of cabon and oxygen isotope values are reported from the IODP 307 hole 1317E in this paper. There are at least nine social events in coldwater coral and carbonate mound development that have taken place for the recent years, which stimulates the research of the deep sea coldwater organism. Coldwater carbonate mounds are of concentration on continenatal slopes in ocean, with variable shapes and sizes, and they are mainly constructed by coldwater tree corals. In general, coldwater carbonate mounds could be triggered by either geofluid, or mcrio biota, or submarine current, but few evidences on geofluid or mcrio biota have been found in the IODP 307 sites, Porcupine Seabight, west off the Ireland shelf. According to primary results from the IODP 307 hole 1317E, two excursion events (I & II) of carbon and oxygen isotope values are recognized in the Middle PleioceneLower Pleistocene intervals of the tree coral mound. Both extremely negative excursion of carbon isotope values and strongly positive excursion of oxygen isotope values (Event I) happened at the base of the mound, which indicates a linkage to the initiation of the mound. An extremely postive excursion of carbon isotope values (Event II) can be recognized from the sample 1317E-3-6w-50-52. The isotope excursion events, especially Event I imply that the paleoceanographic climate has greatly changed since the initial carbonate mound, which is to some extent related to the extremely properous Arctic ice sheet.

中图分类号: 

[1]Kopaska-Merkel D C, Haywick D W. Carbonate mounds: Sedimentation, organismal response, and diagenesis[J]. Sedimentary Geology, 2001,145:157-159.
[2]James N P, von der Borch C C. Carbonate shelf edge off southern Australia: A prograding open-platform margin[J]. Geology,1991,19:1 005-1 008.
[3]James N P, Bone Y, Collins L B, et al. Surficial sediments of the Great Australian Bight: Facies dynamics and oceanography on a vast cool-water carbonate shelf[J]. Journal of Sedimentary Research, 2001, 71: 549-567.
[4]Betzler C, Saxena S, Swart P K, et al. Cool-water carbonate sedimentology and eustasy; Pleistocene upper slope environments, Great Australian Bight (Site 1127, ODP LEG 182) [J]. Sedimentary Geology, 2005, 175: 169-188.
[5]Freiwald A. Geobiology of Lophelia Pertusa (Scleractinia) Reefs in the North Atlantic [M]. Habilitation thesis, University Bremen, 1998.
[6]Freiwald A, Shipboard Party. Cruise Report RV Poseidon Cruise 292[R].Reykjavik-Galway,2002.
[7]Paull C K, Neumann A C, Ende B A, et al. Lithoherms on the Florida Hatteras slope [J]. Marine Geology, 2000, 166: 83-101. 
[8]Huvenne V A I, De Mol B, Henriet J P. A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine basin, SW of Ireland [J]. Marine Geology, 2003, 198: 5-25.
[9]Huvenne V A I, Beyer A, de Haas H, et al. The seabed appearance of different coral bank provinces in the Porcupine Seabight, NE Atlantic:Results from sidescan sonar and ROV seabed mapping [C]//Freiwald A, Roberts J M, eds. Cold-water Corals and Ecosystems. Berlin, Heidelberg: Springer-Verlag,2005:535-569.
[10]Hovland M, Mortensen P B, Brattegard T, et al. Ahermatypic coral banks off mid-Norway: Evidence for a link with seepage of light hydrocarbons [J]. Palaios, 1998, 13: 189-200.
[11]Sager W W, MacDonald I R, Hou Rousheng. Geophysical signatures of mud mounds at hydrocarbon seeps on the Louisiana continental slope, northern gulf of Mexico [J]. Marine Geology, 2003, 198: 97-132.
[12]MacDonald I R, Sager W W, Peccini M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico [J]. Marine Geology, 2003, 198: 133-158. 
[13]Rollet N, Logan G A, Kennard J M, et al. Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: An example from the tropical, carbonate Yampi Shelf, Northwest Australia [J]. Marine and Petroleum Geology,2006, 23: 145-164.
[14]Bosence D W J, Rowlands R J, Quine M L. Sedimentology and budget of a recent carbonate mound, Florida Keys [J]. Sedimentology,1985, 32: 317-343.
[15]Freiwald A, Hühnerbach V, Lindberg B, et al. The Sula reef complex, Norwegian shelf [J]. Facies,2002, 47: 179-200.
[16]Wilson J B. Patch' development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank[J].Journal of Marine Biological Association of the UK, 1979, 59: 165-177.
[17]Wheeler A J,Kozachenko M, Beyer A, et al.Sedimentary processes and carbonate mounds in the Belgica Mound province, Porcupine Seabight, NE Atlantic[C]//Freiwald A, Roberts J M, eds, Cold-water Corals and Ecosystems.Berlin, Heidelberg:  Springer-Verlag, 2005:571-603.
[18]Kenyon N H, Ivanov M K, Akhmetzhanov A M. Cold-water Carbonate Mounds and Sediment Transport on the Northeast Atlantic Margin[R]. IOC Technology Serie, Paris: UNESCO, 1998.
[19]Kenyon N H, Akhmetzhanov A M, Wheeler A J, et al. Giant carbonate mud mounds in the southern Rockall Trough[J].Marine Geology,2003, 195: 5-30. 
[20]Freiwald A, Foss J H, Grehan A. Cold-water coral reefs-Out of sight, no longer out of mind[R]. UNEP and WCMC Report, 2003.
[21]Bathurst R G C. Stromatactes origin related to submarine cemented crusts in Paleozoic mud mounds [J].Geology,1980, 8: 132-134.
[22]Tsien H H. The role of microorganisms and the origin of micrite components in algal reefs and micrite mounds[J].Memoires Instituts Geologigue Del University Catholigue de Louvain,1994,35:123-135.
[23]Dupraz C, Strasser A. Microbialites and microencrusters in shallow coral bioherms (Middle to Late Oxfordian Swiss Jura Mountains)[J].Facies,1999,40:101-130.
[24]Zhang Tingshan, Shen Zhaoguo, Lan Guangzhi,et al. Microbial fossils and their biosedimentation & buildup in Paleozoic mud mounds, Sichuan basin[J]. Acta Sedimentologica Sinica,2002,20(2):241-248.[张廷山,沈昭国,兰光志,等. 四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用[J]. 沉积学报,2002,20(2):241-248.]
[25]Thompson J B, Ferris F G. Cyanobacteia precipitation of gypsum, calcite and magnesite from natural alkaline lake water [J]. Geology,1990,18: 995-998.
[26]Webb G E. Famennian mud-mounds in the proximal fore-reef slope, Canning basin, Western Australia [J].Sedimentary Geology,2001, 145: 295-315.
[27]Zoneveld J P. Middle Triassic biostromes from the Liard Formation, British Columbia, Canada: Oldest examples from the Mesozoic of NW Pangea [J].Sedimentary Geology,2001, 145: 317-341.
[28]Hovland M. Do carbonate reefs form due to fluid seepage? [J].Terra Nova,1990, 2: 8-18.
[29]Hovland M, Croker P F, Martin M. Fault-associated seabed mounds (carbonate knolls?) off western Ireland and northwest Australia [J].Marine and Petroleum Geololgy,1994, 11: 232-246.
[30]Hovland M, Thomsen E. Cold-water corals—Are they hydrocarbon seep related? [J].Marine Geology,1997, 137: 159-164. 
[31]Henriet J P, Guidard S, ODP “Proposal 573” Team. Carbonate mounds as a possible example for microbial activity in geological processes[C]//Wefer G, Billet D, Hebbeln D,eds. Ocean Margin Systems.Berlin Heidelberg:Springer, 2002:439-455.
[32]Henriet J P, De Mol B, Pillen S, et al. Gas hydrate crystals may help build reefs [J].Nature,1998, 391: 648-649.
[33]Naeth J, di Primio R, Horsfield B, et al. Hydrocarbon seepage and carbonate mound formation: A basin modeling study from the Porcupine basin (offshore Ireland) [J].Journal of Petroleum Geology,2005, 28: 147-166.
[34]Kiriakoulakisa K, Bett B J, White M, et al. Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic [J].Deep-Sea Research I,2004, 51: 1 937-1 954. 
[35]IODP 307 Expedition Scientists. Modern Carbonate Mounds: Porcupine Drilling[M]. IODP Preliminary Report, 307, 2005.
[36]Rogers A D. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities [J].Internationbal Review Hydrobiology,1999,84:315-410. 
[37]Hovland M, Risk M. Do Norwegian deep-water coral reefs rely on seeping fluids? [J].Marine Geology,2003, 198: 83-96. 
[38]Ferdelman T G, Kano A, Williams T, et al. Modern Carbonate Mounds: Porcupine drilling[J].Proceedings of the Integrated Ocean Drilling Program,2006, 307:10.2204/iodp.proc. 
[39]Van Weering T C E, de Haas H, de Stigter H C, et al. Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean[J].Marine Geology,2003,198:67-81. 
[40]Masson D G, Howe J A, Stoker M S. Bottom-current sediment waves, sediment drifts and contourites in the northern Rockall Trough[J].Marine Geology,2002, 192: 215-237. 
[41]Masson D G, Bett B J, Billett D S M, et al. The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic [J].Marine Geology,2003,194:159-180. 
[42]O'Reilly B M, Readman P W, Shannon P M, et al. A model for the development of a carbonate mound population in the Rockall Trough based on deep-towed sidescan sonar data [J].Marine Geology,2003, 198: 55-66. 
[43]Van Rooij D, De Mol B, Huvenne V, et al. Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland [J].Marine Geology,2003, 195: 31-53. 
[44]Dorschel B T, Hebbeln D, Rqggeberg A, et al. Growth and erosion of a cold-water coral covered carbonate mound in the northeast Atlantic during the Late Pleistocene and Holocene [J].Earth and Planetary Science Letters,2005, 233: 33-44. 
[45]Huvenne V A I, Croker P F, Henriet J-P. A refreshing 3-dimensional view of an ancient sediment collapse and slope failure [J].Terra Nova,2002,14: 33-40. 
[46]De Mol B, Van Rensbergen P, Pillen S, et al. Larger deep-water coral banks in the Porcupine Basin, southwest of Ireland [J].Marine Geology,2002, 188: 193-231.
[47]New A L, Barnard S, Herrmann P, et al.On the origin and pathway of the saline inflow to the Nordic Seas: Insights from models [J].Progress in Oceanography,2001, 48: 255-287. 
[48]Reid J L. On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea[J].Deep-Sea Research,1979,26:1 199-1 223.
[49]Reston T J,Gaw V,Pennel J,et al.Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine Median High:Iplications for the formation of non-volcanic rifted Margins[J].Journal of the Geological Society,London,2004,161:783-798.
[50]Stoker M S, Nielsen T, van Weering T C E, et al. Towards an understanding of the Neogene tectonostratigraphic framework of the NE Atlantic margin between Ireland and the Faroe Islands[J].Marine Geology,2002,188:233-248.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[7] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[8] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[9] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[10] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[11] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[12] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[13] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[14] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[15] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
阅读次数
全文


摘要