地球科学进展 ›› 2019, Vol. 34 ›› Issue (9): 936 -949. doi: 10.11867/j.issn.1001-8166.2019.09.0936

综述与评述 上一篇    下一篇

海洋微塑料源汇搬运过程的研究进展
张晓栋( ),刘志飞( ),张艳伟,赵玉龙   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2019-06-19 修回日期:2019-08-10 出版日期:2019-09-10
  • 通讯作者: 刘志飞 E-mail:zhangxiaodong@tongji.edu.cn;lzhifei@tongji.edu.cn
  • 基金资助:
    国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(91528304);国家重点研发计划项目“南海南部巽他陆架沉积古环境演变”(2018YFE0202402)

Research Progress on Source-to-Sink Transport Processes of Marine Microplastics

Xiaodong Zhang( ),Zhifei Liu( ),Yanwei Zhang,Yulong Zhao   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2019-06-19 Revised:2019-08-10 Online:2019-09-10 Published:2019-11-15
  • Contact: Zhifei Liu E-mail:zhangxiaodong@tongji.edu.cn;lzhifei@tongji.edu.cn
  • About author:Zhang Xiaodong (1992-), male, Taian City, Shandong Province, Ph.D student. Research areas include observation on deep-sea sedimentation and transport process. E-mail: zhangxiaodong@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Deep-sea sedimentation process and mechanism in the South China Sea”(91528304);The National Key Research and Development Program of China “Evolution of sedimentary environment and paleoclimate of the Sunda shelf in southern South China Sea”(2018YFE0202402)

海洋微塑料是全球性的环境问题和挑战,受到了国际社会的广泛关注。然而,现阶段研究主要集中在调查海洋表层微塑料丰度及生态效应,对深海环境中微塑料的分布和沉积搬运过程认识不足。通过总结近10年海洋微塑料的相关研究,综述了海洋微塑料来源、分布以及从源到汇的搬运过程。实地调查表明,海洋表层和水柱都是海洋微塑料的重要聚集区,而深海表层沉积物却是海洋微塑料最终沉积聚集的汇。海洋微塑料搬运到深海沉积汇的过程包括2种方式:垂向沉降和侧向搬运。实验室模拟表明,海洋中微塑料颗粒沉降速率为300~1 000 m/d,沉降过程除了受控于颗粒密度等物理学性质外,还受海洋动力过程、生物作用和海洋雪聚集等因素的影响。沉积在海底的微塑料则可以随再悬浮沉积物向深海侧向运移,该过程与内波、深海浊流或气候事件等因素有关。但是,微塑料向深海搬运的速率和数量等问题远未解决,不利于全面理解海洋微塑料从源到汇的搬运和沉积过程。因此,建议利用分层沉积物捕集器原位观测微塑料的沉降通量,以便开展深海微塑料源汇搬运过程研究。

Microplastics in marine environment are global environmental issue and challenge and have received an extensive international concern. At present, most of researches focus on the investigation of microplastic abundance in the ocean surface water, and there is insufficient understanding of the distribution and transport processes of microplastics in the deep-sea environment. This paper reviewed marine microplastic studies carried out in the last decade, and summarized the source, global distribution and transport processes of microplastics. Field investigations showed that both surface water and water column were important accumulation areas for microplastics, while deep-sea surface sediments were final sinks for microplastic deposition and accumulation. Transport of microplastics to the deep sea included two modes: vertical settlement and lateral transport. Laboratory simulation showed that the sinking rate of microplastic particles in the ocean changed between 300 and 1 000 meters per day, and the sinking process was not solely controlled by particle physical properties such as particle density, but also influenced by ocean dynamic process, biological action and marine snow aggregation. Microplastics deposited on the seafloor could migrate laterally towards the deep sea with resuspended sediments, which were related to internal waves, deep-sea turbidity current or climatic events. However, there remain the key knowledge gaps in uncertain speed and quantity of microplastics moving to the deep sea, which is not conducive to the comprehensive understanding of the microplastic transport process from source to sink. Therefore, it is recommended to observe the vertical sinking flux of microplastics with layered sediment traps in order to study the source-to-sink transport processes of microplastics in deep-sea environment.

中图分类号: 

图1 全球大洋表层塑料碎屑数量(a)和质量(b)丰度分布[ 24 ]
数据来自1972—2013年27项海洋表层漂浮塑料碎屑研究和11 854次表层拖网调查结果
Fig.1 Numerical (a) and mass (b) abundance distribution of global plastic debris floating on sea surface[ 24 ]
Data were obtained from total 27 floating debris studies with 11 854 surface trawls carried out between 1971 and 2013
图2 蒙特利湾51 000 m水柱中微塑料含量垂向分布[ 40 ]
Fig.2 Microplastic concentrations varied across sample depths ranging from 5 to 1 000 m, in the offshore waters of the Monterey Bay[ 40 ]
图3 东北太平洋近海表(水深4.5 m)微塑料含量分布[ 42 ]
Fig.3 Total microplastic concentrations in near-surface waters (4.5 m) of the NE Pacific Ocean[ 42 ]
图4 马里亚纳海沟深层海水(a)和海底表层沉积物(b)中微塑料分布及组成[ 11 ]
Fig.4 Profile of microplastic abundances and compositions in hadal water (a) and sediments (b) from Mariana Trench[ 11 ]
图5 水柱实验测试微塑料物理性质对其沉降速度的影响[ 45 ]
微圆柱体(红色虚线)是底面圆直径与高相等的特殊圆柱体,其形状近似天然颗粒;Δ ρ/ ρ表示微塑料颗粒相对于海水的过剩密度
Fig.5 Predicted settling velocities of microplastic particles of different physical characteristics [ 45 ]
Short isometric cylinders (red dash-dot curves) were circular rods with diameters equal to the length, approximating the natural grains; Δρ/ρ represent the relative excess densities of particles to seawater
图6 海洋动力状态对海表边界层(<0.25 m)微塑料碎片含量的影响[ 49 , 50 ]
(a)海洋表层塑料碎屑含量数据来自708个航次调查结果,碎屑含量超过4×10 5 p/km 2的24个数据点没有显示;(b)航次调查结果(红线)和基于波平均纳维—斯托克斯方程的大尺度涡模拟结果(黑线),模型采用恒定的上浮速度1.4 cm/s;(c)航次调查全部结果(灰点)和海面10 m高度风速5~7 m/s情况下的结果(黑色加号)
Fig.6 Sea surface (<0.25 m)plastic concentrations influenced by ocean dynamic state[ 49 , 50 ]
(a) Surface plastic concentrations derived from a total of 708 observations, the 24 largest plastic concentration values greater than 4×10 5 p/km 2 are not shown; (b) Regression lines for the observations (red line) and for the large eddy simulations (black lines) of the wave-averaged Navier-Stokes equation, given a terminal buoyant rise velocity as 1.4 cm/s; (c) Surface plastic concentrations of all observations (gray dots) and subsampled observations (black pluses) for 5< U 10<7 m/s
图7 实验室人工海洋雪对微塑料沉降速度的影响[ 66 ]
Fig.7 Images of marine snows with incorporated polymers and effect on sinking rates[ 66 ]
图8 纳扎雷峡谷模型观测箱中高密度微塑料残留时间[ 47 ]
(a)2009年春/夏季共101天模拟结果;(b)2011年秋/冬季共101天模拟结果;观测箱按编号1~4沿峡谷轴部向下分布
Fig.8 Residence times of high-density benthic marine microplastic pellets in each monitor box of the Nazaré Canyon model simulation[ 47 ]
(a) 101-day model run of spring/ summer 2009; (b) 101-day model run of autumn/ winter 2011; Locations of the monitor boxes 1~4 were along the canyon axis
图9 北冰洋海冰冰芯中微塑料含量分布及迁移路径[ 75 ]
(a)冰芯(A~E和Ha~Hd)位置和北冰洋表层洋流系统;(b)微塑料总数量分布;(c)微塑料组份含量分布;(d)除A和Ha外的海冰冰芯漂移轨迹
Fig.9 Microplastic content and pathway of sea ice cores in the Central Arctic[ 75 ]
(a)Positions of sea ice cores (A~E and Ha~Hd) and a schematic view of surface current systems in the Arctic; (b) Total microplastic particle load; (c) Average % composition of microplastic polymers; (d) Drift trajectories of sea ice cores except core A and Ha
1 GeyerR, JambeckJ R, LawK L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782.
2 JambeckJ R., GeyerR, WilcoxC, et al. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6 223): 768-771.
3 ArthurC, BakerJ, BamfordH. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris[C]. Washington: NOAA Marine Debris Division, 2009.
4 AlimiO S, Farner BudarzJ, HernandezL M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science &amp; Technology, 2018, 52(4): 1 704-1 724.
5 CarpenterE J, AndersonS J, HarveyG R, et al. Polystyrene spherules in coastal waters [J]. Science, 1972, 178(4 062): 749-750.
6 ThompsonR C, OlsenY, MitchellR P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5 672): 838.
7 van CauwenbergheL, VanreuselA, MeesJ, et al. Microplastic pollution in deep-sea sediments [J]. Environmental Pollution, 2013, 182: 495-499.
8 WoodallL C, Sanchez-VidalA, CanalsM, et al. The deep sea is a major sink for microplastic debris [J]. Royal Society Open Science, 2014, 1(4): 140 317.
9 FischerV, ElsnerN O, BrenkeN, et al. Plastic pollution of the Kuril-Kamchatka Trench area (NW Pacific) [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 111: 399-405.
10 BergmannM, WirzbergerV, KrumpenT, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory [J]. Environmental Science &amp; Technology, 2017, 51(19): 11 000-11 010.
11 PengX, ChenM, ChenS, et al. Microplastics contaminate the deepest part of the world’s ocean [J]. Geochemical Perspectives Letters, 2018, 9: 1-5.
12 AndradyA L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1 596-1 605.
13 ColeM, LindequeP, HalsbandC, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2 588-2 597.
14 GagoJ, CarreteroO, FilgueirasA V, et al. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments [J]. Marine Pollution Bulletin, 2018, 127: 365-376.
15 Group of Experts on the Scientific Aspects of Marine Pollution. The State of the Marine Environment [M]. London: Blackwell Scientific Publications, 1991.
16 SheavlyS B, RegisterK M. Marine debris & plastics: Environmental concerns, sources, impacts and solutions [J]. Journal of Polymers and the Environment, 2007, 15(4): 301-305.
17 BowmerT, KershawP. Proceedings of the GESAMP International Workshop on Microplastic Particles as a Vector in Transporting Persistent, Bio-accumulating and Toxic Substances in the Ocean [C]. Paris:UNESCO-IOC, 2010.
18 LebretonL C M, Van der ZwetJ, DamsteegJ W, et al. River plastic emissions to the world’s oceans [J]. Nature Communications, 2017, 8: 15 611.
19 SchmidtC, KrauthT, WagnerS, et al. Export of plastic debris by rivers into the sea [J]. Environmental Science &amp; Technology, 2017, 51(21): 12 246-12 253.
20 ZhaoS, ZhuL, WangT, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568.
21 FokL, CheungP K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution [J]. Marine Pollution Bulletin, 2015, 99(1/2): 112-118.
22 CaiM, HeH, LiuM, et al. Lost but can't be neglected: Huge quantities of small microplastics hide in the South China Sea [J]. Science of the Total Environment, 2018, 633: 1 206-1 216.
23 EriksenM, LebretonL C M, CarsonH S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PLoS ONE, 2014, 9(12): e111913.
24 van SebilleE, WilcoxC, LebretonL C M, et al. A global inventory of small floating plastic debris [J]. Environmental Research Letters, 2015, 10(12): 124 006.
25 LebretonL C M, SlatB, FerrariF, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic [J]. Scientific Reports, 2018, 8(1): 4 666.
26 LawK L, Morét-FergusonS, MaximenkoN A, et al. Plastic accumulation in the North Atlantic subtropical gyre [J]. Science, 2010, 329(5 996): 1 185-1 188.
27 LawK L, More?t-FergusonS E, GoodwinD S, et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set [J]. Environmental Science &amp; Technology, 2014, 48(9): 4 732-4 738.
28 MooreC J, MooreS L, LeecasterM K, et al. A comparison of plastic and plankton in the North Pacific central gyre [J]. Marine Pollution Bulletin, 2001, 42(12): 1 297-1 300.
29 GoldsteinM C, RosenbergM, ChengL. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect [J]. Biology Letters, 2012, 8(5): 817-820.
30 EriksenM, MaximenkoN, ThielM, et al. Plastic pollution in the South Pacific subtropical gyre [J]. Marine Pollution Bulletin, 2013, 68(1/2): 71-76.
31 CózarA, EchevarríaF, González-GordilloJ I, et al. Plastic debris in the open ocean [J]. Proceedings of the National Academy of Sciences, 2014, 111(28): 10 239-10 244.
32 YamashitaR, TanimuraA. Floating plastic in the Kuroshio current area, western North Pacific Ocean [J]. Marine Pollution Bulletin, 2007, 4(54): 485-488.
33 LusherA L, BurkeA, O’ConnorI, et al. Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1/2): 325-333.
34 van SebilleE, EnglandM H, OriginFroyland G., dynamics and evolution of ocean garbage patches from observed surface drifters [J]. Environmental Research Letters, 2012, 7(4): 044040.
35 CózarA, MartíE, DuarteC M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation [J]. Science Advances, 2017, 3(4): e1600582.
36 KoelmansA A, KooiM, LawK L, et al. All is not lost: Deriving a top-down mass budget of plastic at sea [J]. Environmental Research Letters, 2017, 12(11): 114 028.
37 KukulkaT, ProskurowskiG, Morét‐FergusonS, et al. The effect of wind mixing on the vertical distribution of buoyant plastic debris [J]. Geophysical Research Letters, 2012, 39(7). DOI:10.1029/2012GL051116.
doi: 10.1029/2012GL051116    
38 ReisserJ W, SlatB, NobleK D, et al. The vertical distribution of buoyant plastics at sea: An observational study in the North Atlantic Gyre [J]. Biogeosciences, 2015, 12(4): 1 249-1 256.
39 KooiM, ReisserJ, SlatB, et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean [J]. Scientific Reports, 2016, 6: 33 882.
40 ChoyC A, RobisonB H, GagneT O, et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column [J]. Scientific Reports, 2019, 9(1): 7 843.
41 KanhaiL D K, G?rdfeldtK, LyashevskaO, et al. Microplastics in sub-surface waters of the Arctic Central Basin [J]. Marine Pollution Bulletin, 2018, 130: 8-18.
42 DesforgesJ P W, GalbraithM, DangerfieldN, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 2014, 79(1/2): 94-99.
43 LiW C, TseH F, FokL. Plastic waste in the marine environment: A review of sources, occurrence and effects [J]. Science of the Total Environment, 2016, 566: 333-349.
44 KowalskiN, ReichardtA M, WaniekJ J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors [J]. Marine Pollution Bulletin, 2016, 109(1): 310-319.
45 KhatmullinaL, IsachenkoI. Settling velocity of microplastic particles of regular shapes [J]. Marine Pollution Bulletin, 2017, 114(2): 871-880.
46 BallentA, PurserA, de Jesus MendesP, et al. Physical transport properties of marine microplastic pollution[J]. Biogeosciences Discussions, 2012, 9(12): 18 755-18 798.
47 BallentA, PandoS, PurserA, et al. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon [J]. Biogeosciences, 2013, 10(12): 7 957-7 970.
48 DietrichW E. Settling velocity of natural particles [J]. Water Resources Research, 1982, 18(6): 1 615-1 626.
49 BrunnerK, KukulkaT, ProskurowskiG, et al. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris [J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 559-7 573.
50 KukulkaT, LawK L, ProskurowskiG. Evidence for the influence of surface heat fluxes on turbulent mixing of microplastic marine debris [J]. Journal of Physical Oceanography, 2016, 46(3): 809-815.
51 Courtene-JonesW, QuinnB, GaryS F, et al. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean [J]. Environmental Pollution, 2017, 231: 271-280.
52 Morét-FergusonS, LawK L, ProskurowskiG, et al. The size, mass, and composition of plastic debris in the western North Atlantic Ocean [J]. Marine Pollution Bulletin, 2010, 60(10): 1 873-1 878.
53 LobelleD, CunliffeM. Early microbial biofilm formation on marine plastic debris [J]. Marine Pollution Bulletin, 2011, 62(1): 197-200.
54 YeS, AndradyA L. Fouling of floating plastic debris under Biscayne Bay exposure conditions [J]. Marine Pollution Bulletin, 1991, 22(12): 608-613.
55 WangJ, TanZ, PengJ, et al. The behaviors of microplastics in the marine environment [J]. Marine Environmental Research, 2016, 113: 7-17.
56 KooiM, NesE H V, SchefferM, et al. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics [J]. Environmental Science &amp; Technology, 2017, 51(14): 7 963-7 971.
57 ZettlerE R, MincerT J, Amaral-ZettlerL A. Life in the “plastisphere”: Microbial communities on plastic marine debris [J]. Environmental Science &amp; Technology, 2013, 47(13): 7 137-7 146.
58 KühnS, RebolledoE L B, van FranekerJ A. Deleterious effects of litter on marine life[M]//BergmannM, GutowL, KlagesM, eds. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 75-116.
59 QuX, SuL, LiH, et al. Assessing the relationship between the abundance and properties of microplastics in water and in mussels[J]. Science of the Total Environment, 2018, 621: 679-686.
60 SunXiaoxia. Progress and prospect on the study of the ecological risk of microplastics in the ocean [J]. Advances in Earth Science, 2016, 31(6): 560-566.
孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
61 JamiesonA J, MalkocsT, PiertneyS B, et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna [J]. Nature Ecology &amp; Evolution, 2017, 1(3): 51.
62 JamiesonA J, BrooksL S R, ReidW D K, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, 6(2): 180 667.
63 KatijaK, ChoyC A, SherlockR E, et al. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea [J]. Science Advances, 2017, 3(8): e1700715.
64 LongM, MoriceauB, GallinariM, et al. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates [J]. Marine Chemistry, 2015, 175: 39-46.
65 ZhaoS, DanleyM, WardJ E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2017, 9(9): 1 470-1 478.
66 PorterA, LyonsB P, GallowayT S, et al. Role of marine snows in microplastic fate and bioavailability[J]. Environmental Science &amp; Technology, 2018, 52(12): 7 111-7 119.
67 ZhangChen, WangQing, ZhaoJianmin. Numerical simulation of transportation of marine microplastics: A review[J]. Advances in Earth Science, 2019, 34(1): 72-83.
张晨, 王清, 赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
68 LebretonL C M, GreerS D, BorreroJ C. Numerical modelling of floating debris in the world’s oceans [J]. Marine Pollution Bulletin, 2012, 64(3): 653-661.
69 LebretonL C M, BorreroJ C. Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami [J]. Marine Pollution Bulletin, 2013, 66(1/2): 53-58.
70 SchliningK, Von ThunS, KuhnzL, et al. Debris in the deep: Using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 79: 96-105.
71 TubauX, CanalsM, LastrasG, et al. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes[J]. Progress in Oceanography, 2015, 134: 379-403.
72 ZhangY, LiuZ, ZhaoY, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea [J]. Geology, 2018, 46(8): 675-678.
73 ObbardR W, SadriS, WongY Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice[J]. Earth's Future, 2014, 2(6): 315-320.
74 ObbardR W. Microplastics in polar regions: The role of long range transport [J]. Current Opinion in Environmental Science &amp; Health, 2018, 1: 24-29.
75 PeekenI, PrimpkeS, BeyerB, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic[J]. Nature Communications, 2018, 9(1): 1 505.
[1] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[2] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[3] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[4] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[5] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[6] 陈春, 高峰, 鲁景亮, 陈松丛. 日本海洋科技战略计划与重点研究布局及其对我国的启示[J]. 地球科学进展, 2016, 31(12): 1247-1254.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[9] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[10] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[11] 汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.
[12] 李建如,徐景平,刘志飞. 底基三脚架在深海观测中的应用[J]. 地球科学进展, 2013, 28(5): 559-565.
[13] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[14] 赵强,修宗祥. 台湾河海输运系统宿命整合研究综述[J]. 地球科学进展, 2013, 28(1): 31-38.
[15] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
阅读次数
全文


摘要