地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1111 -1124. doi: 10.11867/j.issn.1001-8166.2016.11.1111

上一篇    下一篇

OBS广角地震探测在海洋沉积盆地研究中的作用
夏少红 1( ), 曹敬贺 1, 万奎元 1, 2, 范朝焰 1, 2, 孙金龙 1   
  1. 1.中国科学院边缘海地质重点实验室,中国科学院南海洋研究所,广东 广州 510301
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-08-02 修回日期:2016-10-15 出版日期:2016-11-20
  • 基金资助:
    国家自然科学基金项目“南海东北部三维精细地壳结构及其对岩浆活动和构造属性的约束”(编号:91328206)和“南海西北部琼东南盆地深部地壳结构及其构造响应”(编号:41576041)资助

Role of the Wide-angle OBS Seismic Exploration in the Research of Marine Sedimentary Basin

Shaohong Xia 1( ), Jinghe Cao 1, Kuiyuan Wan 1, 2, Chaoyan Fan 1, 2, Jinlong Sun 1   

  1. 1.CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-08-02 Revised:2016-10-15 Online:2016-11-20 Published:2016-11-20
  • About author:

    First author:Xia Shaohong(1981-),male,Jingzhou City, Hubei Province,Professor.Research areas include marine geophysics and deep tectonics of continental margin.E-mail:shxia@scsio.ac.cn

    作者简介:夏少红(1981-),男,湖北荆州人,研究员,主要从事海洋地球物理与大陆边缘深部构造研究.E-mail:shxia@scsio.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Three-dimensional active-source seismic tomography of crust in northeastern South China Sea and its constraints in magmatism and tectonics”(No.91328206)and “The deep crustal structure and its tectonic response of the Qingdongnan Basin in the northwestern SCS”(No.41576041)

海洋沉积盆地是地球系统中重要的构造单元之一,其形成演化涉及到壳—幔、岩石圈—软流圈以及沉积地层和沉积流体体系等一系列深浅部耦合作用和地球动力学机制的演变。海洋沉积盆地的研究既包括地球深部结构状态、物质组成和构造演化等区域构造方面,也包括盆地内部结构、构造特征以及沉积地层孔隙流体特征等盆地自身构造特征。海底地震仪(Ocean Bottom Seismometer,OBS)广角地震探测,以其深度上穿透能力强和能够同时获取P波和S波速度结构等方面的优势,近年来在海洋沉积盆地区域构造演化、内部结构与构造以及沉积地层孔隙流体发育特征等研究中发挥了越来越重要的作用。在张裂大陆边缘的研究中,OBS广角地震探测所获取的地壳结构模型为划分“火山型”和“非火山型”张裂陆缘提供了直接证据,地壳拉张减薄的程度和空间变化特征为海洋沉积盆地构造演化的动力学模拟提供了约束条件。在盆地内部结构和构造特征方面,OBS深地震探测对盆地内部的盐体构造、岩浆底辟构造等提供了有效成像,并获取了盆地内部超压状态的分布特征,弥补了常规多道地震在探测深度和复杂地质构造背景等方面的缺陷。在海洋沉积盆地内部流体体系的研究方面, OBS深地震探测揭示了天然气水合物储集区的速度结构,进而计算获取了储集区的厚度以及水合物和游离气体在孔隙中的含量。当然,随着OBS地震探测技术的发展、数据处理能力的提高以及仪器设备参数的改善等,未来OBS广角地震探测在海洋沉积盆地动力学演化过程和机制方面的研究中将继续发挥更大更广泛的作用。

Marine sedimentary basin is an important tectonic unit in the earth, and the evolution of marine sedimentary basin involves a series of the coupling and evolution of geodynamic mechanism such as the crust-mantle, the lithosphere-asthenosphere, the strata-fluid deposition. Therefore, the study of marine sedimentary basin dynamics includes deep structure state of earth, material composition and regional tectonic evolution, and also internal structure, tectonic characteristics and pore fluid characteristics strata of the basin. Wide angle Ocean Bottom Seismometer (OBS) seismic exploration is a marine geophysical survey method originated and developed since 1980’s and 1990’s, which has the advantages of strong penetration capability, high seismic imaging precision and reception of both P-wave and S-wave, and playing an increasing significant role in the research of marine sedimentary basin at the aspect of regional tectonic evolution, internal structure and pore fluid development characteristics of strata in recent years. In the study of passive continental margin, the crustal structure acquired from wide angle OBS seismic data provides the direct evidence that divides the passive continental margins into magma-poor and magma-dominated ones, and the degree of thinning and spatial variation characteristics of crust provide constraints for dynamics simulations of tectonic evolution in marine sedimentary basin. In the study of the structure features of basin, wide angle OBS seismic exploration fills in gaps at the aspect of investigation depth and complex geological structure in conventional multi-channel seismic survey, and acquires overpressure distribution status of basin according to the velocity structure characteristics of strata, and then infer the basin sedimentation velocity and pore fluid characteristics. In the study of internal fluid system in marine sedimentary basin, it reveals the velocity structure of natural gas hydrate reservoir through the analysis and processing of wide angle OBS seismic data, and calculates the thickness of natural gas hydrate reservoir and the content of hydrate and free gas in pore based on the velocity variation. Of course, the future wide angle OBS seismic exploration in the aspect of dynamic evolution and mechanism research in marine sedimentary basin will play a more important role with the development of marine seismic exploration technology, the improvement of data processing and instrument parameters.

中图分类号: 

图1 全球被动陆缘(a)和海洋油气产区分布图(b)(据参考文献[2]修改)
Fig.1 The distribution of global rift continental margin (a) and offshore oil-gas reserviors (b)(modified after reference[2])
图2 OBS广角地震探测示意图
Fig.2 Schematic diagram of wide angle OBS seismic exploration
图3 典型的“非火山型”(a)和“火山型”(b)张裂陆缘示意图(据参考文献[31]修改 )
Fig.3 Schematic sketch of the end-member of magma-poor (a) and magma-dominated (b) passive continental margins based on OBS seismic data(modified after reference[31] )
图4 Lions和Sardinia 区域速度结构剖面图
(a)共轭陆缘Lions湾和西Sardinia岛区域测线AB和GH的最终速度剖面;(b)Lions湾—Sardinia岛在海底扩张初期的位置重建黑色虚线表示由地壳速度结构变化所限定的3个区域,编号表示3个区域的位置
Fig.4 The final velocity models of Lions-Sardinia area
(a) Geological cross sections based on the final velocity models AB and GH; (b) Reconstruction of the Gulf of Lions-Sardinia area at the onset of seafloor spreading.Black dashed ticks: Limits of the 3 different regions determined from variations of the crustal velocity structures modelled and represented in Fig. 4 a. Numbers indicate location of the 3 regions
图5 黑海盆地东部测线1的沉积层速度模型(a)、孔隙流体压力结构(b)和流体压力比λ *值分布(c)(据参考文献[45]修改)
Fig.5 Final sedimentary velocity model of Line 1 in the Eastern Black Sea Basin (a), pore fluid pressure result (b) and fluid pressure ratio values (c)(modified after reference[45])
图6 站位N3(a)、N2(b)、S2(c)纵波和纵波速度曲线以及与HYDRATECH数据和挪威中部边缘(Storegga)的 Vp与 Vs速度对照图表(d)与泊松比(e)(据参考文献[53]修改)
Fig.6 Compilation of the P and S-wave velocities for the Site N3(a), N2(b), S2(c), crossplot of P-and S-wave velocities of N3, N2 and S2 compared to HYDRATECH data and the central Norwegian margin (labeled “Storegga”)(modified after reference[53] )
图7 南海部分OBS深地震探测地壳结构(据参考文献[59,61~64]修改)
Fig.7 Crustal structures of South China Sea from wide angle seismic experiments using OBS (modified after references[59,61~64] )
[1] He Dengfa, Li Desheng.Advances in studies of the dynamics of sedimentary basins[J]. Earth Science Frontiers,1995, (3): 53-58.
[何登发, 李德生. 沉积盆地动力学研究的新进展[J]. 地学前缘, 1995,(3):53-58.]
[2] White N, Thompson & Amp M, Barwise T. Understanding the thermal evolution of deep-water continental margins[J]. Nature,2003, 426(6 964):334-343.
[3] Kendall J M, Stuart G W, Ebinger C J, et al.Magma-assisted rifting in Ethiopia[J]. Nature,2005, 433(7 022):146-148.
[4] Rosenbaum G, Weinberg R F, Klaus R L.The geodynamics of lithospheric extension[J]. Tectonophysics,2008, 458(1/4): 1-8.
[5] Lavier L, Manatschal G.A mechanism to thin the continental lithosphere at magma-poor margins[J]. Nature,2006, 440(7 082):324-328.
[6] Armitage J J, Collier J S, Minshull T A.The importance of rift history for volcanic margin formation[J].Nature,2010,465(7 300): 913-917.
[7] Ruppel C.Extensional processes in continental lithosphere[J].Journal of Geophysical Research: Solid Earth,1995, 100(B12): 24 187-24 215.
[8] Fernandez M, Ranalli G.The role of rheology in extensional basin formation modelling[J]. Tectonophysics,1997, 282(1): 129-145.
[9] Buck W R.Modes of continental lithospheric extension[J]. Journal of Geophysical Research: Solid Earth,1991, 96(B12): 20 161-20 178.
[10] Brun J P, Mckenzie D.Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments[J]. Philosophical Transactions of the Royal Society of London,1999, 357(1 753):695-712.
[11] Braun J, Beaumont C.A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins[J]. Geology,1989, 17(8): 760-764.
[12] Corti G, Manetti P.Asymmetric rifts due to asymmetric Mohos: An experimental approach[J]. Earth and Planetary Science Letter,2006, 245(1): 315-329.
[13] Chian D, Keen C, Reid I, et al.Evolution of nonvolcanic rifted margins: New results from the conjugate margins of the Labrador Sea[J]. Geology,1995, 23(7): 589-592.
[14] White R S, Mckenzie D.Magmatism at rift zones: The generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research,1989, 94(B6): 7 685-7 729.
[15] Hao Tianyao, You Qingyu.Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics,2012, 54(12): 3 352-3 361.
[郝天珧, 游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报, 2012, 54(12): 3 352-3 361.]
[16] Qiu Xuelin, Zhao Minghui, Ao Wei, et al.OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea[J]. Chinese Journal of Geophysics,2011, 54(12): 3 117-3 128.
[丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的 OBS 探测和地壳结构[J].地球物理学报, 2011, 54(12): 3 117-3 128.]
[17] Ruan Aiguo, Niu Xiongwei, Qiu Xuelin, et al.A wide angle Ocean Bottom Seismometer profile across Liyue Bank, the southern margin of South China Sea[J]. Chinese Journal of Geophysics,2011,54(12): 3 139-3 149.
[阮爱国, 牛雄伟, 丘学林, 等. 穿越南沙礼乐滩的海底地震仪广角地震试验[J]. 地球物理学报, 2011, 54(12): 3 139-3 149.]
[18] Sallares V, Gailler A, Gutscher M A, et al.Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin)[J]. Earth and Planetary Science Letters,2011, 311(1): 112-123.
[19] Wang T K, Chen M, Lee C S, et al.Seismic imaging of the transitional crust across the northeastern margin of the South China Sea[J]. Tectonophysics,2006, 412(3): 237-254.
[20] Ruiz M, Galve A, Monfret T, et al.Seismic activity offshore Martinique and Dominica Islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks[J]. Tectonophysics,2013, 603: 68-78,doi:10.1016/j.tecto.2011.08.006.
[21] Eakin D H, Mcintosh K D, Avendonk H J A V, et al. Crustal-scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision[J]. Journal of Geophysical Research Solid Earth, 2014, 119(1):1-17.
[22] Minshull T A, Lane C I, Collier J S, et al.The relationship between rifting and magmatism in the northeastern Arabian Sea[J]. Nature Geoscience, 2008, 1(7): 463-467.
[23] Collier J S, Minshull T A, Hammond J O S, et al. Factors influencing magmatism during continental breakup: New insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins[J]. Journal of Geophysical Research Atmospheres,2009, 114(B3):438-457.
[24] Thybo H, Nielsen C A.Magma-compensated crustal thinning in continental rift zones[J]. Nature,2009, 457(7 231): 873-876.
[25] Hopper J R, Dahl-Jensen T, Holbrook W S, et al.Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening[J]. Journal of Geophysical Research Atmospheres, 2003, 108(B5):127-143.
[26] Korenaga J, Holbrook W S, Kent G M, et al.Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography[J]. Journal of Geophysical Research Atmospheres,2000, 105(B9): 21 591-21 614.
[27] White R S, Smith L K, Roberts A W, et al.Lower-crustal intrusion on the North Atlantic continental margin[J]. Nature,2008, 452(7 186):460-464.
[28] Armitage J J, Henstock T J, Minshull T A, et al.Modelling the composition of melts formed during continental breakup of the Southeast Greenland margin[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 248-258.
[29] Whitmarsh R B, Avedik F, Saunders M R.The seismic structure of thinned continental crust in the northern Bay of Biscay[J]. Geophysical Journal of the Royal Astronomical Society,1986, 86(2): 589-602.
[30] Keen C E, Potter D P.The transition from a volcanic to a nonvolcanic rifted margin off eastern Canada[J]. Tectonics,1995, 14(2): 359-371.
[31] Franke D.Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins[J]. Marine Petroleum Geology,2012, 43(3):63-87.
[32] Eldholm O, Flaeide J I, Myhre A M.Continent-ocean transition at the western Barents Sea/Svalbard continental margin[J]. Geology,1987, 15(12): 1 118-1 122.
[33] Mjelde R, Raum T, Myhren B, et al.Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data[J]. Journal of Geophysical Research Solid Earth,2005, 110(B5),doi:10.1029/2004JB003026.
[34] Gernigon L, Lucazeau F, Brigaud F, et al.A moderate melting model for the Vøring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implication for the meaning of the lower crustal bodies[J]. Tectonophysics, 2006, 412(3): 255-278.
[35] White R S, Smith L K.Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic[J]. Journal of Geophysical Research Atmospheres,2009, 114(B2):1 205-1 222.
[36] Whitmarsh R B, Manatschal G, Minshull T A.Evolution of magma-poor continental margins from rifting to seafloor spreading[J]. Nature,2001,413(852): 150-154.
[37] Peron-Pinvidic G, Manatschal G.The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: A new point of view[J]. International Journal of Earth Sciences,2009, 98(7): 1 581-1 597.
[38] Reston T J.The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis[J]. Tectonophysics, 2009, 468(1): 6-27.
[39] Eccles J D, White R S, Christie P A F. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves[J]. Tectonophysics,2011, 508(1): 22-33.
[40] Zhao M, Qiu X, Xia S, et al.Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data[J]. Tectonophysics, 2010, 480(1): 183-197.
[41] Minshull T A, Dean S M, Whitmarsh R B.The peridotite ridge province in the southern Iberia Abyssal Plain: Seismic constraints revisited[J]. Journal of Geophysical Research: Solid Earth,2014, 119(3): 1 580-1 598.
[42] Edwards R A, Whitmarsh R B, Scrutton R A.The crustal structure across the transform continental margin off Ghana, eastern equatorial Atlantic[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B1): 747-772.
[43] Gailler A, Klingelhoefer F, Olivet J L, et al, Crustal structure of a young margin pair: New results across the Liguro-Provencal Basin from wide-angle seismic tomography[J]. Earth and Planetary Science Letters,2009, 286(1): 333-345.
[44] Mackenzie G D, Shannon P M, Jacob A W B, et al. The velocity structure of the sediments in the southern Rockall Basin: Results from new wide-angle seismic modelling[J]. Marine and Petroleum Geology,2002, 19(8): 989-1 003.
[45] Morewood N C, Shannon P M, Mackenzie G D.Seismic stratigraphy of the southern Rockall Basin: A comparison between wide-angle seismic and normal incidence reflection data[J]. Marine and Petroleum Geology, 2004, 21(9): 1 149-1 163.
[46] Scott C L, Shillington D J, Minshull T A, et al.Wide-angle seismic data reveal extensive overpressures in the Eastern Black Sea Basin[J]. Geophysical Journal International, 2009, 178(2): 1 145-1 163.
[47] Wu S, Yao G, Dong D, et al.Geological structures for forming gas hydrate reservoir in the huge deepwater gas field of the northern South China Sea[J]. Acta Petrolei Sinica, 2008, 29(3):324-328.
[48] Holbrook W S, Hoskins H, Wood W T, et al.Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science,1996, 273(5 283): 1 840-1 843.
[49] Dai J, Xu H, Snyder F, et al.Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico[J]. The Leading Edge,2004, 23(1): 60-66.
[50] Xu W, Ruppel C.Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research Solid Earth,1999, 104(B3): 5 081-5 095.
[51] Ruppel C.Methane Hydrates and the Future of Natural Gas[R].Cambridge: MIT Energy Initiative,2011:1-25.
[52] Haacke R R, Westbrook G K, Hyndman R D.Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector[J]. Earth and Planetary Science Letters,2007, 261(3): 407-420.
[53] Chabert A, Minshull T A, Westbrook G K, et al.Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data[J]. Journal of Geophysical Research Atmospheres,2011, 116(B12),doi:10.1029/2011JB008211.
[54] Schlesinger A, Cullen J, Spence G, et al.Seismic velocities on the Nova Scotian margin to estimate gas hydrate and free gas concentrations[J]. Marine and Petroleum Geology,2012, 35(1): 105-115.
[55] Dash R, Spence G.P-wave and S-wave velocity structure of northern Cascadia margin gas hydrates[J]. Geophysical Journal International,2011, 187(3): 1 363-1 377.
[56] Zhang Guangxue, Huang Yongxiang, Chen Bangyan, et al.Marine Gas Hydrate Seismology[M]. Beijing: Ocean Press, 2003.
[张光学,黄永祥,陈邦彦,等. 海域天然气水合物地震学[M]. 北京:海洋出版社,2003.]
[57] Sha Zhibin, Zheng Tao, Zhang Guangxue, et al.An optimal design of a High-Frequency Ocean Bottom Seismometer (HF-OBS) and its application to the natural gas hydrate exploration in the South China Sea[J].Natural Gas Industry,2014, 34(7): 136-142.
[沙志斌,郑涛,张光学, 等. 海底高频地震仪观测系统优化设计及其在南海天然气水合物勘探中的应用[J].天然气工业,2014, 34(7):136-142.]
[58] Wu Zhongliang.Study of source in 3-D seismic and OBS exploration for marine gas hydrate[J]. Journal of Tropical Oceanography, 2011, 30(1): 49-60.
[伍忠良. 海洋天然气水合物三维地震与海底地震勘探中的震源技术研究[J].热带海洋学报,2011, 30(1): 49-60.]
[59] Qiu X, Ye S, Wu S, et al.Crustal structure across the Xisha trough, northwestern South China Sea[J]. Tectonophysics,2001, 341(1): 179-193.
[60] Wu Zhenli, Li Jiabiao, Ruan Aiguo, et al.Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment[J]. Science in China(Series D), 2011, 41(10): 1 463-1 476.
[吴振利, 李家彪, 阮爱国,等. 南海西北次海盆地壳结构: 海底广角地震实验结果[J]. 中国科学: D辑, 2011, 41(10): 1 463-1 476.]
[61] Ao Wei, Zhao Minghui, Qiu Xuelin, et al.Crustal structure of the northwest sub-basin of the South China Sea and its tectonic implication[J]. Earth Science—Journal of China University of Geosciences,2012, 37(4):779-790.
[敖威, 赵明辉, 丘学林,等.南海西北次海盆及其邻区地壳结构和构造意义[J]. 地球科学——中国地质大学学报, 2012,37(4): 779-790.]
[62] Yan P, Zhou D, Liu Z.A crustal structure profile across the northern continental margin of the South China Sea[J]. Tectonophysics,2001, 338(1): 1-21.
[63] Wei Xiaodong, Ruan Aiguo, Zhao Minghui, et al.A wide-angle OBS profile across the Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea[J]. Chinese Journal of Geophysics,2011, 54(6):3 325-3 335.
[卫小冬, 阮爱国, 赵明辉, 等. 穿越东沙隆起和潮汕坳陷的 OBS 广角地震剖面[J]. 地球物理学报, 2011, 54(12): 3 325-3 335.]
[64] Qiu M.The P-wave Velocity Modelling of the Transitional Crust in Northern South China Sea Continental Margin[D]. Keelung: National Taiwan Ocean University, 2010.
[65] Yeh Y C, Sibuet J C, Hsu S K, et al.Tectonic evolution of the Northeastern South China Sea from seismic interpretation[J].Journal of Geophysical Research Solid Earth,2010, 115(B6):258-273.
[66] Zhang J, Li J, Ruan A, et al.The velocity structure of a fossil spreading centre in the Southwest Sub-basin, South China Sea[J]. Geological Journal, 2016,doi: 10.1002/gj.2778.
[67] Pichot T, Delescluse M, Chamot-Rooke N, et al.Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J]. Marine and Petroleum Geology,2014, 58: 627-643,doi:10.1016/j.marpetgeo.2013.10.008.
[68] He E, Zhao M, Qiu X, et al.Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: Tectonic significance[J]. Journal of Asian Earth Sciences,2016, 121: 139-152,doi:10.1016/j.jseaes.2016.03.003.
[69] Wang J, Zhao M, Qiu X, et al.3D seismic structure of the Zhenbei-Huangyan seamounts chain in the East Sub-basin of the South China Sea and its mechanism of formation[J]. Geological Journal,2016,doi:10.1002/gj.2781.
[70] Li Jiabiao.Dynamics of the continental margins in South China Sea: Scientific experiments and research progresses[J]. Chinese Journal of Geophysics, 2012, 54(6):883-893.
[李家彪. 南海大陆边缘动力学: 科学实验与研究进展[J]. 地球物理学报, 2012, 54(12): 2 993-3 003.]
[71] Ruan Aiguo, Wei Xiaodong, Niu Xiongwei, et al.Crustal structure and fracture zone in the Central Sea Basin of the South China Sea from wide angle seismic experiments using OBS[J]. Tectonophysics,2016, 688: 1-10,doi:10.1016/j.tecto.2016.09.022.
[72] Wan K Y, Cao J H, Xia S X, et al.Characteristics of secondary Pg phases from OBS wide-angle seismic survey and their role in crustal imaging[J]. Chinese Journal of Geophysics,2016, 59(4): 427-441.
[73] Wang Pinxian.Earth system science:Conception and misconception-To the third conference on Earth system science,Shanghai[J]. Advances in Earth Science,2014,29(11):1 277-1 279, doi:10.11867/j. issn. 1001-8166. 2014. 11.1277.
[汪品先. 对地球科学系统的理解与误解——献给第三届地球科学系统大会[J]. 地球科学进展,2014,29(11):1 277-1 279, doi:10.11867/j. issn. 1001-8166. 2014. 11.1277.]
[74] Wang Pinxian.Chinese Earth Science at its turning point[J]. Advances in Earth Science,2016,31(7):665-667,doi:10. 11867/ j. issn. 1001-8166. 2016. 07. 0665.
[汪品先. 迎接我国地球科学的转型[J]. 地球科学进展,2016,31(7):665-667,doi:10. 11867/ j. issn. 1001-8166. 2016. 07. 0665.]
[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[3] 陈祖兴,曾志刚,王晓媛,殷学博,陈帅,张玉祥. 岩浆房持续的时间:矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12): 1232-1242.
[4] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[5] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[6] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[7] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[8] 周怀阳. 洋壳的基本问题与人类的莫霍钻梦想[J]. 地球科学进展, 2017, 32(12): 1245-1252.
[9] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[10] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[11] 刘超, 谢庆宾, 王贵文, 崔宇, 张楚珺. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望[J]. 地球科学进展, 2015, 30(6): 654-667.
[12] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[13] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[14] 支鹏遥,刘保华,华清峰,刘晨光,裴彦良,郑彦鹏,郝天珧. 渤海海底地震仪探测试验及初步成果[J]. 地球科学进展, 2012, 27(7): 769-777.
[15] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
阅读次数
全文


摘要