[1] |
Ciais P, Sabine C, Bala G, et al.Carbon and other biogeochemical cycles[C]∥Stocker T F, Qin D, Plattner G K, et al, eds.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York:Cambridge University Press,2013.
|
[2] |
Peters W, Jacobson A R, Sweeney C, et al.An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker[J].PNAS, 2007,104(48):18 925-18 930.
|
[3] |
Peters W, Krol M C, van der Werf G R, et al. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations[J]. Global Change Biology,2010,16(4):1 317-1 337.
|
[4] |
Zhang S, Zheng X, Chen J M, et al.A global carbon assimilation system using a modified ensemble Kalman filter[J]. Geoscientific Model Development, 2015, 8: 805-816, doi:10.5194/gmd-8-805-2015.
|
[5] |
Yang D, Liu Y, Cai Z,et al.An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations[J]. Chinese Science Bulletin,2015, 60(23):2 063-2 066.
|
[6] |
Chevallier F, Palmer P I, Feng L, et al.Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2[J].Geophysical Research Letters, 2014,41:1 065-1 070, doi: 10.1002/2013GL058772.
|
[7] |
Houweling S, Baker D, Basu S,et al.An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements[J]. Journal of Geophysical Research—Atmopshere,2015,120: 5 253-5 266, doi: 10.1002/2014JD022962.
|
[8] |
Kemp S, Scholze M, Ziehn T,et al.Limiting the parameter space in the Carbon Cycle Data Assimilation System (CCDAS)[J]. Geoscientific Model Development, 2014, 7: 1 609-1 619, doi:10.5194/gmd-7-1609-2014.
|
[9] |
Scholze M, Kaminski T, Knorr W, et al.Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle[J].Remote Sensing of Environment, 2016, 180: 334-345, doi: 10.1016/j.rse.2016.02.058.
|
[10] |
Parazoo N, Bowman K, Fisher J B,et al.Terrestrial gross primary production inferred from satellite fluorescence and vegetation models[J]. Global Change Biology,2014, 20: 3 103-3 121,doi: 10.1111/gcb.12652.
|
[11] |
Zhang Y G, Guanter L, Berry J A, et al.Estimation of vegetation photosynthetic capacity from space-based measurement of chlorophyll fluorescence for terrestrial biosphere models[J].Global Change Biology,2014, 20: 3 727-3 742,doi:10.1111/gcb.12664.
|
[12] |
Koffi E N, Rayner P J, Norton A J, et al.Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system[J]. Biogeosciences,2015, 12: 4 067-4 084, doi: 10.5194/bg-12-4067-2015.
|
[13] |
Zhang S, Yi X, Zheng X, et al.Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models[J]. Journal of Geophysical Research—Biogeosciences, 2014,119, doi:10.1002/2014JG002792.
|
[14] |
Chen Jingming, Ju Weimin, Liu Ronggao, et al.Remote Sensing and Optimization Calculation Methods of Global Terrestrial Carbon Sinks[M]. Beijing: Science Press, 2015:371.
|
|
[陈镜明,居为民,刘荣高,等. 全球陆地碳汇的遥感和优化计算方法[M]. 北京:科学出版社,2015:371.]
|
[15] |
Tian X, Feng X.A non-linear least squares enhanced POD-4DVar algorithm for data assimilation[J].Tellus A, 2015, 67,doi: 10.3402/tellusa.v67.25340.
|
[16] |
Tian X, Xie Z, Liu Y, et al.A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations[J].Atmospheric Chemistry and Physics, 2014, 14:13 281-13 293,doi:10.5194/acp-14-13281-2014.
|
[17] |
Zhang H F, Chen B Z, van der Laan-Luijkx I T, et al. Net terrestrial CO2 exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO2[J].Journal of Geophysical Research—Atmosphere, 2014, 119(6): 3 500-3 515.
|