[1] Martin R A,Nesbitt E A,Campbell K A. Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps,Cascadia accretionary margin[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,246:260-277.
[2] Niewohner C,Hensen C,Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta,1998,62:455-464.
[3] Rathburn A E,Levin L A,Held Z,et al. Benthic foraminifera associated with cold methane seeps on the northern California margin:Ecology and stable isotopic composition[J]. Marine Micropaleontology,2000,38:247-266.
[4] Hill T M,Kennett J P,Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel,California[J]. Marine Micropaleontology,2003,49:123-138.
[5] Chen Fang,Su Xin,Lu Hongfeng,et al. Carbon stable isotopic composition of benthic foraminiferas from the north of the south China sea:Indicator of methane-rich environment[J]. Marine Geology and Quaternary Geology,2007,27:1-7.[陈芳,苏新,陆红锋,等.南海北部浅表层沉积底栖有孔虫碳同位素及其对富甲烷环境的指示[J]. 海洋地质与第四纪地质,2007,27:1-7.]
[6] Wefer G,Heinze P-M,Berger W H. Clues to ancient methane release[J]. Nature,1994,369:282.
[7] Garidel-Thoron T D,Beaufort L,Bassinot F,et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode[J]. Proceedings of the National Academy of Sciences,2004,101:9 187-9 192.
[8] Barbieri R,Panieri G. How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy[J]. Paleogeography,Paleoclimatology,Paleoecology,2004,204:257-275.
[9] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall Trough(NE Atlantic)[J]. Geobios,2005,38:247-255.
[10] Kennett J P,Cannariato K G,Hendy I L,et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science,2000,288:128-133.
[11] Sen Gupta B K,Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters,1994,14:88-96.
[12] Hill T M,Kennett J P,Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps,Hydrate Ridge,northeast Pacific[J]. Geochimica et Cosmochimica Acta,2004,68:4 619-4 627.
[13] Sen Gupta B K,Platon E,Bernhard J M,et al. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope[J]. Journal of Foraminiferal Research,1997,27:292-300.
[14] Expedition 311 Scientists. Cascadia Margin Gas Hydrates[R]. IODP Preliminary Report,2005,311,doi:10:2204/ iodp.pr.311.
[15] Riedel M. Three dimensional seismic investigations of northern Cascadia marine gas hydrates[Z]. Canada:University of Victoria,2001.
[16] Rathburn A E,Perez M E,Martin J B,et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2003,4:1 106.
[17] Martin J B,Day S A,Rathburn A E,et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2004,5,Q04004,doi:10.1029/2003GC000629.
[18] Panieri G. Foraminiferal response to an active methane seep environment:A case study from the Adriatic sea[J]. Marine Micropaleontology,2006,61:116-130.
[19] Spero H J,Lea D W. Experimental determination of stable isotope variability in Globigerina bulloides:Implications for paleoceanographic reconstructions[J]. Marine Micropaleontology,1996,28:231-246.
[20] Hallam S J,Putnam N,Preston C M,et al. Reverse Methanogenesis:Testing the Hypothesis with environmental genomics[J]. Science,2004,305:1 457-1 462.
[21] Hoehler T M,Alperin M J,Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochem Cycles,1994,8:451-463.
[22] Boetius A,Ravenschlag K,Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407:623-626.
[23] Hinrichs K U,Boetius A. The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry[C]∥Wefer G,Billet D,Hebbeln D,eds. Ocean Margin Systems. Heidelberg:Springer-Verlag,2002:457-477.
[24] Hinrichs K U,Hayes J M,Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999,398:802-805.
[25] Lanoil B D,Sassen R,La Duc M T,et al. Bacteria and archaea physically associated with gulf of mexico gas hydrates[J]. Applied and Environmental Microbiology,2001,67:5 143-5 153.
[26] Michaelis W,Seifert R,Nauhaus K,et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1 013-1 015.
[27] Orphan V J,Hinrichs K U,Ussler W,et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in Anoxic Marine Sediments[J]. Applied and Environmental Microbiology,2001,67:1 922-1 934.
[28] Thomsen T R,Finster K,Ramsing N B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment[J]. Applied and Environmental Microbiology,2001,67:1 646-1 656.
[29] Jiasheng W,Wang Y,Li Q. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments: A review[J]. Frontiers of Earth Science in China,2007,1:444-451. |