地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 212 -219. doi: 10.11867/j.issn.1001-8166.2010.02.0212

所属专题: IODP研究

IODP研究 上一篇    下一篇

黑潮源区沉积物微生物多样性初步研究
魏玉利 1,王 鹏 1*,赵美训 1,张传伦 1,2    
  1. 1.同济大学海洋地质国家重点实验室,上海  200092;
    2. Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
  • 收稿日期:2009-12-14 修回日期:2009-12-30 出版日期:2010-02-10
  • 通讯作者: 王鹏(1978-), 女, 山东德州人,副教授, 主要从事地质微生物学研究. E-mail:mail:pengwang@tongji.edu.cn
  • 基金资助:

     国家自然科学基金重点项目“南海冷泉区甲烷通量及其对海底环境与生态系统影响的生物地球化学研究”(编号:40730844);国家“十一五”大洋专项基金项目“深部生物圈微生物活动在沉积物和间隙水中的地球化学记录研究”(编号:DYXM-115-02-2-17);国家高技术研究发展计划重点课题“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

A Preliminary Study of Microbial Diversity of the Top Sediment from the MD06-3047

Wei Yuli 1,Wang Peng 1*, Zhao Meixun 1, Zhang Chuan-lun 1,2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai  200092, China;2.Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
  • Received:2009-12-14 Revised:2009-12-30 Online:2010-02-10 Published:2010-02-10
  • Contact: 王鹏(1978), 女, 山东德州人,副教授, 主要从事地质微生物学研究. Email: pengwang@tongji.edu.cn E-mail:mail:pengwang@tongji.edu.cn

从黑潮源区采集上层沉积物,进行DNA提取,以细菌和古菌的16S rDNA通用引物PCR扩增黑潮源区沉积物中细菌和古菌群落的16S rDNA,并构建细菌和古菌的16S rDNA 文库,经限制性片段长度多态性分析(Restriction Fragment Length Polymorphism, RFLP),DNA序列测定和系统发育分析,对黑潮源区表层沉积物的细菌和古菌多样性进行了研究。研究结果表明:黑潮源区细菌包括了变形杆菌(Proteobacteria)、酸杆菌(Acidbacterium)、浮霉菌(Planctanycene)、疣微菌(Verrucomicrobia)和Candidate division OP8和拟杆菌(Bacteroidetes)共6个类群, 其中变形杆菌是优势类群。古菌包括了泉古菌(Crenarchaeota)和广古菌(Euryarchaeota),其中泉古菌占优势;泉古菌包括MCG、C3、MBGA 和MGI 4个类群,而广古菌包括SAGMEG、MBGE和MEG 3个类群,其中MBGE是优势类群。

Total DNA was extracted from the top sediment layer (0-10 cm) of MD06-3047 in the Kuroshio and was used as template for polymerase chain reaction (PCR) amplification employing specific primers for bacterial and archaeal 16S rRNA genes. The 16S rDNA libraries were then constructed. Microbial diversity was analyzed by using restriction fragment length polymorphism (RFLP), DNA sequencing and phylogenetic analysis. The results show that there are six phyla in the Bacteria domain: Proteobacteria, Acidbacterium, Planctanycenea, Verrucomicrobia, Candidate division OP8 and Bacteroidetes, and the phylum Proteobacteria is predominant. In the Archaea domain, Crenarchaeota dominates over Euryarchaeota. There are four divisions in the Crenarchaeota kingdom: MCG, C3, Marine Benthic Group A, Marine Group;  three divisions in Euryarchaeota kingdom: South Africa Golden mine Euryarchaeota Group、Marine Benthic Group E and MEG, and the Marine Benthic Group E is the dominating group. 



中图分类号: 

[1] Chu T Y. The fluctuations of the Kuroshio Current in the eastern sea area of Taiwan[J].Acta Oceanography Taiwan,1974,(4): 1-12.
[2] Wang Zheng, Hou Yijun, Le Kentang, et al. Advances in study on the Kuroshio in the source region [J].Studia Marina Sinica,2007, 48:35-41.[王铮, 侯一筠, 乐肯堂, 等. 源区黑潮研究进展 [J]. 海洋科学集刊, 2007, 48: 35-41.] 
[3] Zhao Jingtao, Chang Fengming, Li Tiegang, et al. Carbonate cycle and its control factors in Kuroshio source during the last 190 ka BP[J].Acta Petrologica Sinica,2008, 24:1 401-1 410.[赵京涛, 常凤鸣, 李铁刚, 等. 近190 ka BP 以来菲律宾海黑潮源区的碳酸盐旋回记起控制因素 [J]. 岩石学报,2008, 24:1 401-1 410.] 
[4] Yuan Yaochu, Kaneko Arata, Su Jilan, et al. The Kuroshio east of Taiwan and in the East China Sea and the currents east of the Ryukyu Islands during early summer of 1996[J].Oceanography,1998, 54: 217-226.
[5] Johns W E, Lee T N, Liu C T, et al.  PCM-1 array monitors Kuroshio transport [J].WOCE Notes,1995, 7: 10-13. 
[6] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority [J].Proceedings of the National Academy of Sciences of the United States of America,1998, 95: 6 578-6 583.
[7] Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments, in Kaplan[C]//Natural Gases in Marine Sediments. New York: N Y Plenum Press, 1974:99-139.
[8] Fisk M R, Giovannoni S J, Thorseth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity [J].Science,1998, 281: 978-980.
[9] Dang H, Li J, Zhang X, et al. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin [J].Journal of Applied Microbiology, 2009, 106: 1 482-1 493.
[10] Zhou J Z, Davery E, Figure J B. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA [J].Microbiology,1997, 143: 3 913-3 919.
[11] Gurtler V, Stanisich V A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region[J].Microbiology,1996, 142: 3-16.
[12] DeLong E F. Archaea in coastal marine environments[J].Proceedings of the Natlional Academy of Sciences USA,1992, 89: 5 685-5 689.
[13] Maidak B L, Cole J R, Lilburn T G, et al. The RDP-II (ribosome database project) [J].Nucleic Acids Research,2001, 29: 173-174.
[14] Thompson J D, Higgins D G, Gibson T J. CLUSTAL-W-Improving the sensitivy of progressive multiple sequence alignment through sequence weighting, position-specific gap penalies and weight martix choice [J].Nucleic Acids Research,1994, 22: 4 673-4 680.
[15] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J].Briefings in Bioinformatics,2004, 5: 150-163.
[16] Li Tao, Wang Peng, Wang Pinxian. Microbial diversity in surface sediments of the Xisha Trough, the South China Sea [J].Acta Ecologica Sinica,2008, 28 (3) : 1 166-1 173.[李涛, 王鹏,汪品先. 南海西沙海槽表层沉积物微生物多样性 [J]. 生态学报, 2008, 28 (3): 1 166-1 173.]
[17] Inagaki F, Sakihama Y, Inoue A, et al. Molecular phylogenetic analyses of reversetranscribed bacterial rRNA obtained from deep-sea cold seep sediments [J].EnvironmentalMicrobiology,2002, 4(5): 277-286.
[18] Marchesi J R, Weightman A J, Cragg B A, et al. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia margin as revealed by 16S rRNA molecular analysis[J].FEMS Microbiology Ecology,2001, 34: 221-228.
[19] Urakawa H, Kita-Tsukamoto K, Ohwada K. Restriction fragment length polymorphism (RFLP) analysis of psychrophilic and psychrotrophic Vibrio and photobacterium from the western North Pacific Ocean and Otsuchi Bay, Japan [J].FEMS Microbiology Letters,1998, 165(2): 373-378.
[20] Doronina N V, Darmaeva T D, Trotsenko Y A. Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East  Mongolian saline soda lake [J].International Journal of Systematic and Evolutionary Microbiology, 2003, 53 (1): 223-229.
[21] Zeng R, Zhao J, Zhang R, et al. Bacterial Community in sediment from the western Pacific Warm Pool and its relationship to environment [J].China Environmental Science, 2005, 48: 282-290.
[22] Barns S M, Fundyga R E, Jeffries M W, et al. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment [J].Proceedings of the Natlconal Academy Sciences USA,1994,91:1 609-1 613. 
[23] Coolen M J, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean sapropels mediated by prokaryotes [J].Science,2002, 296: 2 407-2 410. 
[24] Inagaki F, Suzuki M, Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Ohkotsk [J]. Applied Environmental Microbiology,2003, 69: 7 224-7 235. 
[25] Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic Archaea at cold seeps [J]. Applied and Environmental Microbiol,2005,71: 467-479. 
[26] Vetriani C, Jannasch H W, MacGregor B, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology, 1999, 65: 4 375-4 384. 
[27] Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin[J]. Proceedings of Natlioual Academy of the Sciences USA,2006, 103: 2 815-2 820.
[28] Institut Polaire Francais.MD155-Marco Polo 2 Images XIV Cruise Report[R]. Technopôle Brest-Iroise: Institut Polaire Francais, 2006.
[29] Inagaki F, SuzukiM, Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk[J]. Applied and Environmental Microbiology, 2003,69(12): 7 224-7 235.

[1] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[2] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[3] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
[4] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[5] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[6] 李 东, 李 祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2): 243-252.
[7] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[8] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[9] 姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010, 25(5): 474-483.
[10] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[11] 孙松,孙晓霞. 国际海洋生物普查计划[J]. 地球科学进展, 2007, 22(10): 1081-1086.
[12] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[13] 侯建军;黄邦钦. 海洋蓝细菌生物固氮的研究进展[J]. 地球科学进展, 2005, 20(3): 312-319.
[14] 张运林;秦伯强;陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.
[15] 万鹰昕,刘丛强,傅平青,刘建军. 微生物参与下的水/粒界面吸附反应研究进展[J]. 地球科学进展, 2002, 17(5): 699-704.
阅读次数
全文


摘要