地球科学进展 ›› 2020, Vol. 35 ›› Issue (1): 70 -78. doi: 10.11867/j.issn.1001-8166.2020.001

综述与评述 上一篇    下一篇

现代碳酸盐叠层石的重要进展及意义
张薇( )   
  1. 中国地质大学地球科学与资源学院,北京 100083
  • 收稿日期:2019-11-04 修回日期:2019-12-11 出版日期:2020-01-20
  • 基金资助:
    国家自然科学基金项目“华北克拉通北缘寒武纪生物丘沉积组构多样性研究”(41472090)

Important Development and Significance of Modern Carbonate Stromatolites

Wei Zhang( )   

  1. School of Earth Sciences and Resources,China University of Geosciences, Beijing 100083,China
  • Received:2019-11-04 Revised:2019-12-11 Online:2020-01-20 Published:2020-02-27
  • About author:Zhang Wei (1995-), female, Yinchuan City, Ningxia Hui Autonomous Region, Master student. Research area include sedimentology. E-mail: 543305738@qq.com
  • Supported by:
    the National Natural Science Foundation of China "Study on the diversity of sedimentary fabrics of cambrian microbial mound on the northern margin of the North China Platform"(41472090)

作为记录地球早期生命历史的代表物,叠层石已经从35亿年追溯到了古老的37亿年。叠层石为早期生命的存在提供了间接证据,特别是现代碳酸盐叠层石的形成,更加证实了叠层石是蓝细菌生物席的钙化建造物。在现代碳酸盐叠层石中,以下地区的碳酸盐叠层石经前人长期研究已取得一些进展:巴哈马台地的粗粒叠层石、澳大利亚超盐度环境中的细粒叠层石、巴西东南部超盐度潟湖中的细粒叠层石。基于前人的研究成果,通过对现代碳酸盐叠层石的生长机制,以及复杂的微生物活动和沉积过程的追溯,认为本溪火连寨剖面寒武系张夏组中部的叠层石生物丘与现代碳酸盐叠层石存在明显差异,说明现代叠层石的沉积模式还不能完全应用在古代叠层石中。因此,现代碳酸盐叠层石和古代叠层石的对比,可以进一步为了解寒武纪叠层石的构建以及微生物碳酸盐岩工厂提供丰富的思考途径。

Stromatolite, as the representative of recorder in the early life history of the Earth, has been traced back from 3.5 billion years to 3.7 billion years ago. Stromatolites do provide indirect evidence for the existence of early life on the Earth, especially the composition of modern carbonate stromatolites, which further proves that stromatolites are calcified structures of cyanobacterial mats. Among the modern carbonate stromatolites, the following examples have been studied for a long time: Coarse stromatolites on the platform of Bahamas, fine stromatolites in the ultra-salinity environment of Australia and ultra-salinity lagoon of southeastern Brazil. Based on the predecessors' research results, by tracing the growth mechanism of modern carbonate stromatolites and the complex microbial activities and deposition processes, the formation of stromatolites in the middle of the Zhangxia Formation of Cambrian in the Huolianzhai section of Benxi is obviously different from that of modern carbonate stromatolites, which indicates that the sedimentary model of modern stromatolites cannot be fully applied in the ancient stromatolites. Therefore, the comparison between modern carbonate stromatolites and ancient stromatolites provides a rich way to further understand the construction of Cambrian stromatolites and microbial carbonate factory.

中图分类号: 

图1 巴哈马 Little Darby 群岛碳酸盐叠层石的微观特征[ 12 ]
(a)位于叠层石表面的裂须菌微生物群落;(b)鲕粒砂颗粒(o),间隙充满细胞外聚合物分泌物(e)和蓝细菌(c和箭头所指);(c)主要的造席生物 Schizothrix gebeleinii,其特征是具有滑动的束状纤毛簇;(d)发育在砂颗粒间隙中的隐生菌( Aphanocapsa);(e)鲕粒砂颗粒中的微生物钻孔;(f)管状菌( Solentia;一种真石内蓝细菌)的大规模爆发
Fig.1 Images showing microscopic features of carbonate stromatolites in Little Darby Cay of Bahamas[ 12 ]
(a)Microbial community of Schizothrix on the surface of stromatolites; (b)Oolitic sand particles (o), interstitial filled with extracellular polymer secretions (e) and cyanobacteria (c,arrow); (c) Schizothrix gebeleinii, dominant microorganism in the mat, is characterized by presence of trichome bundled; (d) Aphanocapsa developing in the interstitial spaces of sand grains; (e)Microborings found in particles of oolitic sands; (f)Growth burst of the euendolithic cyanobacterium Solentia
图2 Hamelin Pool的叠层石[ 23 , 28 ]
(a),(b)分别为未石化的光滑状和脓胞状生物席构成的叠层石;(c)微鞘菌( Microcoleus);(d)石囊藻( Entophysalis);(e)石化的脓胞状生物席构成的叠层石表面;(f)脓疱状生物席表面;(g)石化的光滑状生物席构成的叠层石表面;(h)光滑状生物席表面,(f)和(h)中箭头G表示蓝细菌微生物群落组成的绿色层,箭头P代表紫色硫细菌组成的粉色层,箭头B代表硫酸盐还原细菌组成的黑色层;(i)石化的胶粒状生物席构成的叠层石表面;(j)叠层石的穹状构造
Fig.2 Stromatolites from Hamelin Pool[ 23 , 28 ]
(a),(b)They are stromatolites composed of smooth and pustular mats which are non-lithifying;(c) Microcoleus; (d) Entophysalis;(e)The surface of stromatolites composed of lithified pustular mats; (f) Surface of pustular mats; (g)The surface of stromatolites composed of lithified smooth mats; (h)Surface of smooth mats, arrow G represents the green layer composed of cyanobacteria microbial community, arrow P represents the pink layer composed of purple sulfur bacteria, and arrow B represents the black layer composed of sulfate reducing bacteria;(i)The surface of stromatolites composed of lithified colloform mats; (j)A domed structure of stromatolites
图3 巴西 Lagoa Vermelha 现代碳酸盐叠层石的总体特征[ 29 ]
(a)微生物席形成的叠层石的横切面,表现为已石化的碳酸盐沉淀物构成的白色纹层和未石化的有机质层的交替,纹层1为蓝细菌主导的绿色层,纹层2为异养细菌主导的棕色层,纹层3为紫色硫细菌主导的红色层;(b)由较底层的细菌组成的样本,这一层显示出微红色,是紫色硫细菌的象征
Fig.3 Images showing general features of modern carbonate stromatolites in Lagoa Vermelha, Brazil[ 29 ]
(a)The cross section of stromatolites formed by the microbial mat shows alternating layers of white laminae composed of fossilized carbonate sediments with layers of unfossilized organic matter. Layer 1 is the green layer dominated by cyanobacteria, layer 2 is the brown layer dominated by heterotrophic bacteria, and layer 3 is the red layer dominated by purple sulfur bacteria; (b) A sample of bacteria from the lower layer, this layer shows a reddish tint, the symbol of purple sulfur bacteria
图4 辽宁省本溪火连寨剖面张夏组中部的叠层石生物丘的宏观和微观结构
(a)叠层石生物丘的宏观特征;(b)丝状葛万菌( Girvanella)化石,图中方框为典型的丝状钙化蓝细菌鞘化石;(c)清晰的丝状钙化蓝细菌鞘化石;(d)片状分布的葛万菌( Girvanella)化石;(e)球状基座菌( Hedstroemla)菌落
Fig. 4 Macro- and micro structures of stromatolites in the middle Zhangxia Formation in Huolianzhai section, Benxi, Liaoning Province
(a)Macroscopic characteristics of stromatolite bioherm; (b) Girvanella fossils, the microscopic fabric of stromatolites, shown in the box, is typical filamentous calcified cyanobacteria sheaths; (c)Clear calcified cyanobacteria; (d)Patchy distribution of Girvanella fossils; (e)The colony of spherical Hedstroemla
1 Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987,2(3): 241-254.
2 Kalkowsky E. Oolith und Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1908, 60: 68-125.
3 Allwood A C, Walter M R, Kamber B S, et al. Stromatolite reef from the Early Archaean Era of Australia[J]. Nature, 2006, 441(7 094): 714-718.
4 Nutman A P, Bennett V C, Friend C R, et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[J]. Nature, 2016, 537(7 621): 535.
5 Semikhatov M A, Gebelein C D, Cloud P, et al. Stromatolite morphogenesis: Progress and problems[J]. Canadian Journal of Earth Sciences, 1979, 16: 992-1 015.
6 Andersen D T, Sumner D Y, Hawes I, et al. Discovery of large conical stromatolites in Lake Untersee, Antarctica[J]. Geobiology, 2011, 9(3): 280-293.
7 Bosak T, Liang B, Sim M S, et al. Morphological record of oxygenic photosynthesis in conical stromatolites[J]. Proceedings of the National Academy of Sciences, 2009, 106(27): 10 939-10 943.
8 Bosak T, Bush J W M, Flynn M R, et al. Formation and stability of oxygen‐rich bubbles that shape photosynthetic mats[J]. Geobiology, 2010, 8(1): 45-55.
9 Petroff A P, Sim M S, Maslov A, et al. Biophysical basis for the geometry of conical stromatolites[J]. Proceedings of the National Academy of Sciences, 2010, 107(22): 9 956-9 961.
10 Mata S A, Harwood C L, Corsetti F A, et al. Influence of gas production and filament orientation on stromatolite microfabric[J]. Palaios, 2012, 27(4): 206-219.
11 Mei Mingxiang, Meng Qingfen. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2): 127-146.
梅冥相, 孟庆芬.现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口[J].古地理学报, 2016, 18(2): 127-146.
12 Reid R P, Foster J S, Radtke G, et al. Modern marine stromatolites of Little Darby Island, Archipelago Exuma, Bahamas: Environmental setting, accretion mechanisms and role of euendoliths[M]// Joachim Reitner, Nadia-ValérieQuéric, Gernot Arp. Advances in Stromatolite Geobiology. Berlin, Heidelberg:Springer, 2011: 77-89.
13 Logan B W. Cryptozoon and associate stromatolites from the Recent, Shark bay, Western Australia[J]. The Journal of Geology, 1961, 69(5): 517-533.
14 Delfino D O, Wanderley M D, Silva L H S E, et al. Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil[J]. Sedimentary Geology, 2012, 263: 85-95.
15 Mei Mingxiang. Microbial-mat sedimentology: A young branch from sedimentology[J]. Advances in Earth Science, 2011, 26(6): 586-597.
梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J].地球科学进展, 2011, 26(6): 586-597.
16 Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3): 285-304.
梅冥相.微生物席的特征和属性: 微生物席沉积学的理论基础[J].古地理学报, 2014, 16(3): 285-304.
17 Stolz J F, Reid R P, Visscher P T, et al. The microbial communities of the modern marine stromatolites at Highborn Cay, Bahamas[J]. Atoll Research Bulletin, 2009, 567: 1-29.
18 Wild C, Laforsch C, Huettel M. Detection and enumeration of microbial cells within highly porous calcareous reef sands[J]. Marine and Freshwater Research, 2006, 57: 415-420.
19 Tribollet A, Golubic S, Radtke G, et al. On microbiocorrosion[M]//Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences. Berlin, Heidelberg:Springer, 2011.
20 Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47 (Suppl.1): 179-214.
21 Cockbain A E. Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia[J]. Developments in Sedimentology, 1976, 20: 389-411.
22 Reid R P, James N P, Macintyre I G, et al. Shark Bay stromatolites: Microfabrics and reinterpretation of origins[J]. Facies, 2003, 49: 299-324.
23 Suosaari E P, Reid R P, Playford P E, et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia[J]. Scientific Reports, 2016, 6: 20 557-20 557.
24 Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96: 141-162.
25 Suosaari E P, Awramik S, Reid R P, et al. Living dendrolitic microbial mats in Hamelin Pool, Shark Bay, Western Australia[J]. Geosciences, 2018, 8(6): 212-212.
26 Suosaari E P, Reid R P, Oehlert A M, et al. Stromatolite provinces of Hamelin Pool: Physiographic controls on stromatolites and associated lithofacies[J]. Journal of Sedimentary Research, 2019, 89(3): 207-226.
27 Reinold M, Wong H L, MacLeod F I, et al. The vulnerability of microbial ecosystems in a changing climate: Potential impact in Shark Bay[J]. Life, 2019, 9(3): 71-71.
28 Babilonia J, Foster J S, Conesa A, et al. Comparative metagenomics provides insight into the ecosystem functioning of the Shark Bay stromatolites, Western Australia[J]. Frontiers in Microbiology, 2018, 9: 1 359.
29 Vasconcelos C, Warthmann R, McKenzie J A, et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern precambrian relics?[J]. Sedimentary Geology, 2006, 185(3/4): 175-183.
30 Tweedley J R, Dittmann S R, Whitfield A K, et al. Hypersalinity: Global distribution, causes, and present and future effects on the Biota of Estuaries and Lagoons[M]// Coasts and Estuaries. Amsterdam, Netherlands: Elsevier, 2019: 523-546.
31 Playford P E. Geology of the shark bay area, Western Australia[R]//Berry P F, Bradshaw S D, Wilson B R. Research in Shark Bay. Report of the France-Australe Bicentenary Expedition Committee. Perth:Western Australian Museum, 1990:13-31.
32 Laut L, Figueiredo M S L, Lorini M L, et al. Diatoms from the most hypersaline lagoon in Brazil: Vermelha lagoon[J]. Continental Shelf Research, 2019, 181: 111-123.
33 Moreira N F, Walter L M, Vasconcelos C, et al. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system[J]. Geology, 2004, 32(8): 701-704.
34 Pace A, Bourillot R, Bouton A, et al. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis[J]. Geobiology, 2018, 16(4): 378-398.
35 Warthmann R, Vasconcelos C, Bittermann A G, et al. The role of purple sulphur bacteria in carbonate precipitation of modern and possibly early Precambrian stromatolites[M]//Advances in Stromatolite Geobiology. Berlin, Heidelberg:Springer, 2011: 141-149.
36 Awramik S M, Sprinkle J. Proterozoic stromatolites: The first marine evolutionary biota[J]. Historical Biology, 1999, 13(4): 241-253.
37 Gerdes G, Klenke T, Noffke N. Microbial signatures in peritidal siliciclastic sediments,a catalogue[J]. Sedimentology, 2000, 47: 279-308.
38 Mei Mingxiang, Gao Jinhan, Meng Qingfen. From the matground structure to the primary sedimentary structure of a fifth category: Significant concepts on sedimentology[J]. Geosciences, 2006, 20(3): 413-422.
梅冥相,高金汉,孟庆芬.从席底构造到第 5 类原生沉积构造[J].现代地质, 2006, 20(3): 413-422.
39 Mei Mingxiang, Meng Qingfen, Liu Zhirong. Overview of advances in studies of primary sedimentary structures formed by microbes[J]. Journal of Palaeogeography, 2007,9(4): 353-364.
梅冥相,孟庆芬,刘智荣.微生物形成的原生沉积构造研究进展综述[J].古地理学报, 2007, 9(4): 353-364.
40 Elizabeth C B, Gómez E B, Montejano G, et al. Are cyanobacterial mats precursors of stromatolites?[M]//Stromatolites: Interaction of Microbes with Sediments. Dordrecht: Sringer, 2011: 313-341.
41 Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4): 131-145.
42 Bosak T, Knoll A H, Petroff A P. The meaning of stromatolites[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 21-44.
43 Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9): 799-802.
44 Riding R. Calcified cyanobacteria[M]//Creous Agae and Sromatolites. Berlin, Heidelberg: Spinger, 1991: 55-87.
45 Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
46 Riding R. The nature of stromatolites: 3,500 million years of history and a century of research[M]//Advances in Stromatolite Geobiology. Berlin, Heidelberg: Springer, 2011: 29-74.
47 de los Ríos A, Ascaso C, Wierzchos J, et al. Microstructure and cyanobacterial composition of microbial mats from the High Arctic[J]. Biodiversity and Conservation, 2015, 24(4): 841-863.
[1] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[2] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
阅读次数
全文


摘要