Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (9): 959-971    DOI: 10.11867/j.issn.1001-8166.2017.09.0940
综述与评述     
海洋环境中的氨基糖及其在有机质循环过程中的指示作用
任成喆, 袁华茂*, 宋金明, 李学刚, 李宁, 段丽琴
1.中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛 266071;
2.中国科学院大学, 北京 100049;
3.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室,山东 青岛 266237
Amino Sugars and Their Indicating Role in the Cycling of Organic Matter in Marine Environment
Ren Chengzhe, Yuan Huamao*, Song Jinming, Li Xuegang, Li Ning, Duan Liqin
1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
 全文: PDF(4822 KB)   HTML
摘要:

氨基糖作为海洋环境中一类具有重要地球化学特征的有机质,其在海水、颗粒物和沉积物中的含量和组成等信息能够有效反映有机质的来源、降解过程及成岩状态。从氨基糖的来源与组成、海洋环境中的分布特征和影响因素,以及其作为生物标志物对有机质来源和降解状态的指示作用等方面,系统总结了海洋环境中氨基糖的研究进展。结果表明,氨基糖的活性受其大分子形态、环境中溶解氧、营养盐水平和沉积环境的影响。葡萄糖胺/半乳糖胺(GlcN/GalN)和总可水解氨基酸/总可水解氨基糖(THAA/THAS)对有机质来源和降解状态的指示具有一致性,较高的GlcN/GalN和THAA/THAS值可反映浮游生物来源的新鲜有机质,其比值的降低表明有机质逐渐向细菌有机质转化。氨基糖的碳、氮归一化含量对二者的指示具有差异性,其比例的升高和降低取决于有机质降解程度和来源影响的相对贡献大小。胞壁酸可用于估算较为新鲜的细菌有机质对总有机质的贡献,但由于其快速循环而导致在溶解有机质中的含量极低,不适合应用在溶解有机质中。今后的工作应进一步加强不同微生物对海洋环境中氨基糖的贡献,区分有机质来源和降解对氨基糖的影响以及转化和归宿研究。

关键词: 有机质来源细菌降解氨基糖胞壁酸成岩状态    
Abstract:

As a kind of marine organic matter with important geochemical characteristics, amino sugars can effectively reflect the source, diagenetic state and mineralization process of organic matter by their concentration and composition in marine environment. This article systematically concluded the research progresses of amino sugars from the aspects of their source, composition and distribution characteristics in marine environment, and the role as a biomarker indicating source and diagenetic state of marine organic matter. The result showed that the macromolecular morphology, the oxygen and nutrient level and the sedimentary environment could affect the reactivity of amino sugars. The higher ratios of glucosamine to galactosamine (GlcN/GalN) and the Total Hydrolysable Amino Acids to Total Hydrolysable Amino Sugars (THAA/THAS) can reflect the fresh planktonic organic matter source and the lower ratios can reflect the conversion from planktonic to bacterial organic matter. The carbon and nitrogen normalized yield of total hydrolysable amino sugars, however, could give contradictory results depending on the relative contribution of the source and degradation degree of organic matter. Muramic acid is suitable to estimate the contribution of relatively fresh bacteria organic matter to particulate and sediment organic matter, but it is not suitable for applying in the dissolved organic matter because of its very low concentration leading from its rapid recycle. It is critical to enhance the research on the contribution of different microorganisms to amino sugars and differentiate the influence of organic matter source and degradation on amino sugars in marine environment. The research on the conversion and fate of amino sugars in marine environment is also needed.

Key words: Organic matter source    Amino sugars    Muramic acid    Diagenetic state    Bacteria degradation.
收稿日期: 2017-03-03 出版日期: 2017-09-20
ZTFLH:  P734  
基金资助:

国家自然科学基金委员会—山东省联合基金项目“海洋生态环境变化的生物地球化学机制”(编号:U1406403); 国家重点基础研究发展计划项目“海湾营养物质迁移转化规律及其环境效应”(编号:2015CB452902)资助

通讯作者: 袁华茂(1975-),男,江苏南通人,研究员,主要从事海洋生物地球化学研究.E-mail:yuanhuamao@qdio.ac.cn   
作者简介: 任成喆(1991-),男,吉林白城人,博士研究生,主要从事海洋生物地球化学研究.E-mail:renchengzhe@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任成喆
宋金明
李学刚
李宁
段丽琴
袁华茂

引用本文:

任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.

Ren Chengzhe, Yuan Huamao, Song Jinming, Li Xuegang, Li Ning, Duan Liqin. Amino Sugars and Their Indicating Role in the Cycling of Organic Matter in Marine Environment. Advances in Earth Science, 2017, 32(9): 959-971.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.09.0940        http://www.adearth.ac.cn/CN/Y2017/V32/I9/959

[1] Harvey H. Sources and cycling of organic matter in the marine water column[M]∥Volkman J K, ed. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin: Springer, 2006: 1-25.
[2] Chester R, Jickells T. Marine Geochemistry[M]. London: Wiley-Blackwell, 2012: 273-289.
[3] Zhao Bin, Yao Peng, Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J]. Advances in Earth Science , 2016, 31(11): 1 151-1 158.
[赵彬,姚鹏,于志刚.有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展, 2016, 31(11): 1 151-1 158.]
[4] Bourgoin L H, Tremblay L. Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J]. Geochimica et Cosmochimica Acta , 2010, 74(19): 5 593-5 609.
[5] Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science , 2011, 26(4): 355-364.
[朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011, 26(4): 355-364.]
[6] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry , 1997, 27(5): 195-212.
[7] Davis J, Benner R. Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin[J]. Deep-Sea Research II : Topical Studies in Oceanography , 2005, 52(24/26): 3 396-3 410.
[8] Benner R, Kaiser K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter[J]. Limnology and Oceanography , 2003, 48(1): 118-128.
[9] Fernandes L, D’Souza F, Matondkar S G P, et al . Amino sugars in suspended particulate matter from the Bay of Bengal during the summer monsoon of 2001[J]. Journal of Earth System Science , 2006, 115(3): 363-370.
[10] Khodse V B, Bhosle N B. Distribution, origin and transformation of amino sugars and bacterial contriution to estuarine particulate organic matter[J]. Continental Shelf Research , 2013, 68: 33-42.
[11] Gupta L P, Kawahata H. Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J]. Deep Sea Research I : Oceanographic Research Papers , 2000, 47(10): 1 937-1 960.
[12] Ittekkot V, Deuser W G, Degens E T. Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea[J]. Deep Sea Research , 1984, 31:1 057-1 069.
[13] Ittekkot V, Degens E T, Honjo S. Seasonality in the fluxesof sugars, amino acids, and amino sugars to the deep ocean: Panama Basin[J]. Deep Sea Research ,1984, 31(9): 1 071-1 083.
[14] Lahajnar N, Wiesner M G, Gaye B. Fluxes of amino acids and hexosamines to the deep South China Sea[J]. Deep-Sea Research I : Oceanographic Research Papers , 2007, 54(12): 2 120-2 144.
[15] Hashimoto S, Maita Y. Fluxes of amino acid and hexosamine in sinking particles in subarctic and arctic coastal region[J]. Journal of Oceanography , 2003, 59(5): 731-738.
[16] Dauwe B, Middelburg J J. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J]. Limnology and Oceanography , 1998, 43(5): 782-798.
[17] Lomstein B A, Niggemann J, Jørgensen B B, et al . Accumulation of prokaryotic remains during organic matter diagenesis in surface sediments off Peru[J]. Limnology and Oceanography , 2009, 54(4): 1 139-1 151.
[18] Gupta L P, Kawahata H. Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J]. Deep-Sea Research I , 2000, 47(10):1 937-1 960.
[19] Niggemann J, Schubert C J. Sources and fate of amino sugars in coastal Peruvian sediments[J]. Geochimica et Cosmochimica Acta , 2006, 70(9):2 229-2 237.
[20] Liebezeit G. Amino sugars in Bransfield Strait and Weddell Sea sediments[J]. Senckenberiana Maritime , 1993, 23(1): 29-35.
[21] Jennerjahn T C, Ittekkot V. Changes in organic matter from surface waters to continental slope sediments off the Sao Francisco River, eastern Brazil[J]. Marine Geology ,1999, 161(2/4): 129-140.
[22] Brock T D, Madigan M T, Martinko J M, et al . Biology of Microorganisms[M]. New Jersey:Prentice Hall, 1994.
[23] Messner P. Bacterial Glycoproteins[J]. Glycoconjugate Journal , 1997, 14(1):3-11.
[24] Trefzer A, Salas J A, Bechthold A. Genes and enzymes involved in deoxysugar biosynthesis in bacteria[J]. Nature Production Report , 1999, 16(3): 283-299.
[25] Schleifer K H, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications[J]. Bacteriological Reviews , 1972, 36(4): 407-477.
[26] Niggemann J, Schubert C J. Sources and fate of amino sugars in coastal Peruvian sediment[J]. Geochimica et Cosmochimica Acta , 2006, 70(9): 2 229-2 237.
[27] Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen[J]. Limnology and Oceanography , 2008, 53(3): 99-112.
[28] Moriarty D J W. Improved method using muramic acid to estimate biomass of bacteria in sediments[J]. Oecologia , 1977, 26(4): 317-323.
[29] Carstens D, Schubert C J. Amino acid and amino sugar transformation during sedimentation in lacustrine system[J]. Organic Geochemistry , 2012, 50(3): 26-35.
[30] Jeuniaux C. Chitine et Chitinolyse:Un Chapitre de Biologie Moléculaire[M]. Paris: Masson,1963: 181.
[31] Jeuniaux C. Chitine et phylogénie: Application d’une méthode enzymatique de dosage de la chitine[J]. Bulletin des Societes Chimiques Belges , 1965, 47(12): 2 267-2 278.
[32] Jeuniaux C. La chitine dans le règne animal[J]. Bulletin de la Société Zoologique de France ,1982, 107(3): 363-386.
[33] Bussers J C, Jeuniaux C. Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés[J]. Protistologica , 1974, 10(4): 43-46.
[34] Rosati G, Verni F, Ricci N. The cyst of Oxytricha bifaria (Ciliata Hypotrichida). III. Cytochemical investigation[J]. Protistologica , 1984, 20: 197-204.
[35] Mulisch M. Chitin in protistan organisms[J]. European Journal of Protistology ,1993, 29(1): 1-18.
[36] Muzzarelli R A A. Chitin[M]. New York: Pergamon Press, 1977: 309.
[37] Kapaun E, Reisser W. A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae)[J]. Planta , 1995, 197(4): 577-582.
[38] Herth W, Schnepf E. Chitin-fibril formation in algae[M]∥Brown R M,ed. Cellulose and Other Natural Polymer Systems. New York: Plenum Press, 1982: 185-206.
[39] Herth W, Kuppel A, Schnepf E. Chitinous fibrils in the lorica of the flagellate chrysophyte Poterioochromonas stipitata (syn. Ochromonas malhamensis )[J]. Journal of Cell Biology , 1977, 73(2): 311-321.
[40] Henry M C. Chitin production by arthropods in the Hydrosphere[J]. Hydrobiologia , 2002, 470(1/3): 63-96.
[41] Kirchman D L, White J. Hydrolysis and mineralization of chitin in the Delaware estuary[J]. Aquatic Microbial Ecology ,1999, 18(2): 187-196.
[42] Kawasaki N, Benner R. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition[J]. Limnology and Oceanography , 2006, 51(5):2 170-2 180.
[43] Giroldo D, Vieira A A H. An extracellular sulfated fucose-rich polysaccharide produced by a tropical strain of Cryptomonas obovata (Cryptophyceae)[J]. Journal of Applied Phycology , 2002, 14(3): 185-191.
[44] Kudo F, Kawabe K, Kuriki H, et al . A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics[J]. Journal of American Chemical Society , 2005, 127(6): 1 711-1 718.
[45] Nagata T, Meon B, Kirchman D L. Microbial degradation of peptidoglycan in seawater[J]. Limnology and Oceanography , 2003, 48(2): 745-754.
[46] Jørgensen N O G, Tepanaukas R S, Pedrson A G U, et al . Occurrence and degradation of peptidoglycan in aquatic environments[J]. FEMS Microbiology Ecology , 2003, 46(3): 269-280.
[47] Baas M, Briggs D E G, van Heemst, et al . Selective preservation of chitin during the decay of shrimp[J]. Geochimica et Cosmochimica Acta ,1995, 59(5): 945-951.
[48] Gooday G W. The ecology of chitin degradation[M]∥Marshall K C, ed. Advances in Microbial Ecology. London: Plenum Press, 1990: 387-440.
[49] Kirchman D L. The uptake of inorganic nutrients by heterotrophic bacteria[J]. Microbial Ecology , 1994, 28(2): 255-271
[50] Ding Xueli, He Hongbo, Zhang Bin, et al . Plant-N incorporation into microbial amino sugars as affected by inorganic N addition: A microcosm study of 15 N-labeled maize residue decomposition[J]. Soil Biology and Biochemistry , 2011, 43(9): 1 968-1 974.
[51] Ogawa H, Amagai Y, Koike I, et al . Production of refractory dissolved organic matter by bacteria[J]. Science , 2015, 292(5 518): 917-920.
[52] Dauwe B, Middelburg J J. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J]. Limnology and Oceanography , 1998, 43(5): 782-798.
[53] Mopper K, Degens E T. Aspects of Biogeochemistry of Carbohydrates and Proteins in Aquatic Environments[R]. Woods Hole Oceanographic Institute Technical Report, 1972.
[54] Mayzaud P, Martin J L M. Some aspects of the biochemical and mineral composition of marine plankton[J]. Journal of Experimental Marine Biology , 1975, 17(3): 297-310.
[55] Moriarty D J W. Method for estimating biomass of bacteria in aquatic sediments and its application to trophic studies[J]. Oecologia , 1975, 20(3): 219-229.
[56] Bourgoin L H, Tremblay L. Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J]. Geochimica et Cosmochimica Acta , 2010, 74(19): 5 593-5 609.
[57] Tremblay L, Benner R. Organic matter diagenesis and bacterial contributions to detrital carbon and nitrogen in the Amazon River system[J]. Limnology and Oceanography , 2009, 54(3): 681-691.
[58] Moriarty D J W, Hayward A C. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments[J]. Microbial Ecology , 1982, 8(1):1-14.
[59] Giovannoni S, Rappe M. Evolution, diversity, and molecular ecology of marine prokaryotes[M]∥Kirchman D L,ed. Microbal Ecology of the Oceans. Wiley, 2000: 47-84.
[60] Kawasaki N, Sohrin R, Ogawa H, et al . Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean[J]. Aquatic Microbial Ecology , 2011, 62(C6): 165-176.
[61] Lee S, Fuhrman J A. Relationship between biovolume and biomass of naturally derived marine bacterioplankton[J]. Applied and Environmental Microbiology , 1987, 53(6):1 298-1 303.

[1] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[2] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 0, (): 940-952.
[3] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[4] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[5] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[6] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[7] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[8] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[9] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋*[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[10] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[11] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展*[J]. 地球科学进展, 2014, 29(5): 569-576.
[12] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[13] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[14] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[15] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.