1 |
WANG Pinxian. Ocean drilling and marine geology in China [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 7-14.
|
|
汪品先. 大洋钻探与中国的海洋地质[J]. 海洋地质与第四纪地质, 2019, 39(1): 7-14.
|
2 |
YE Jianliang, ZHANG Wei, XIE Wenwei. Preliminary thoughts on implementation of the Ocean Drilling Project in China [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(2): 1-8.
|
|
叶建良, 张伟, 谢文卫. 我国实施大洋钻探工程的初步设想 [J]. 探矿工程:岩土钻掘工程, 2019, 46(2): 1-8.
|
3 |
MAXWELL A E, HERZEN R P VON, HSü J K, et al. Deep sea drilling in the South Atlantic [J]. Science, 1970, 168: 1 047-1 059.
|
4 |
SHACKLETON N, KENNETT J. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277,279, and 281 [C]// Initial reports of the Deep Sea Drilling Project, volume 29. Washington DC: U.S. Government Printing Office, 1975.
|
5 |
KROUS H, BROWN H, FARQUHARSON R. Sulfur isotopic composition in DSDP Leg 37 cores [C]// Initial reports of the Deep Sea Drilling Project, volume37. Washington DC: U.S. Government Printing Office, 1977.
|
6 |
LU Zhengbo, SHI Yukun, HUA Hong, et al. Current data administration and sharing of international scientific ocean drilling [J]. Geological Journal of China Universities, 2020, 26(4): 472-480.
|
|
鲁铮博, 史宇坤, 华洪, 等. 国际大洋科学钻探的数据资源与共享现状 [J]. 高校地质学报, 2020, 26(4): 472-480.
|
7 |
IODP Integrated Ocean Drilling Program. IODP depth scales terminology [Z/OL].[2021-01-15]. .
URL
|
8 |
Lamont-Doherty Earth Observatory, Columbia University. Logging data of scientific ocean drilling [DB/OL]. [2021-01-08]. .
URL
|
9 |
HAY W, SIBUET J, BARRON E, et al. Initial reports of the Deep Sea Drilling Project 75 [C]. Washington DC: U.S. Government Printing Office, 1984.
|
10 |
JOIDES Resolution Science Operator JRSO. Laboratory Information Management System (LIMS) [DB/OL]. .
URL
|
11 |
MONTE GUERRA R DO, CONCHEYRO A, WISE S. New latitude-based nannofossil zonations for the campanian-maastrichtian of the South Atlantic Ocean and their paleoceanographic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 452:55-67.
|
12 |
ROBERT C, CHAMLEY H. Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments[J]. Global and Planetary Change, 1991, 3(4): 315-331.
|
13 |
HUMPHRIS S, THOMPSON G. Geochemistry of Rare Earth Elements in basalts from the Walvis Ridge: implications for its origin and evolution [J]. Earth and Planetary Science Letters, 1983, 66: 223-242.
|
14 |
WANG Y L, LIU Y G, SCHMITT R. Rare Earth Element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My [J]. Geochimica et Cosmochimica Acta, 1986, 50(7): 1 337-1 355.
|
15 |
FORSTER A, KUYPERS M, TURGEON S, et al. The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: new insights from a geochemical study of DSDP Site 530A [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267(3): 256-283.
|
16 |
ROBINSON S, MURPHY D, VANCE D, et al. Formation of "southern component water" in the Late Cretaceous: evidence from Nd-isotopes [J]. Geology, 2010, 38(10):871-874.
|
17 |
MURPHY D, THOMAS D. The evolution of Late Cretaceous deep‐ocean circulation in the Atlantic basins: neodymium isotope evidence from South Atlantic drill sites for tectonic controls [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5 323-5 340.
|
18 |
DU VIVIER A, SELBY D, SAGEMAN B B, et al. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2 [J]. Earth and Planetary Science Letters, 2014, 389: 23-33.
|
19 |
WEIN-BRUKNER A, GOCZAN F, IKRENYI K, et al. Study of organic matter on some Cenozoic samples from the DSDP Walwis Ridge Leg 75 Holes, with emphasis on its origin and petroleum potential[J]. Acta Mineralogica—Petrographica (Szeged), 1985, 27: 175-183.
|
20 |
HARTWIG A, DI PRIMIO R, ANKA Z, et al. Source rock characteristics and compositional kinetic models of Cretaceous organic rich black shales offshore southwestern Africa [J]. Organic Geochemistry, 2012, 51: 17-34.
|
21 |
RAU G, ARTHUR M, DEAN W. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry [J]. Earth and Planetary Science Letters, 1987, 82(3): 269-279.
|
22 |
KRAAL P, SLOMP C, FORSTER A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during Oceanic Anoxic Event 2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(1): 42-54.
|
23 |
FOLAMI S. Magnetic fabric of some IPOD sediment cores from the southwestern sector of Africa [J]. Journal of Sedimentary Research, 1988, 58(3): 512-518.
|
24 |
NORRIS R, KROON D, KLAUS A, et al. Proceedings of the Ocean Drilling Program, initial reports, 171B [C]// College Station, TX: Ocean Drilling Program, 1998.
|
25 |
NORRIS R, KROON D, KLAUS A, et al. Proceedings of the Ocean Drilling Program, scientific results, 171B [C]// College Station, TX: Ocean Drilling Program, 1998.
|
26 |
HOLBOURN A, KUHNT W, ERBACHER J. Benthic foraminifers from lower Albian black shales (Site 1049, ODP Leg 171): evidence for a non "uniformitarian" record [J]. The Journal of Foraminiferal Research, 2001, 31(1): 60-74.
|
27 |
FRIEDRICH O, NISHI H, PROSS J R, et al. Millennial-to centennial-scale interruptions of the Oceanic Anoxic Event 1b (Early Albian, mid-Cretaceous) inferred from benthic foraminiferal repopulation events [J]. Palaios, 2005, 20(1): 64-77.
|
28 |
HOLBOURN A, KUHNT W. No extinctions during Oceanic Anoxic Event 1b: the Aptian-Albian benthic foraminiferal record of ODP Leg 171[J]. Geological Society, London, Special Publications, 2001, 183(1): 73-92.
|
29 |
NORRIS R, HUBER B, SELF-TRAIL J. Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic [J]. Geology, 1999, 27(5): 419-422.
|
30 |
HUBER B T, MACLEOD K G, NORRIS R D, et al. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the Cretaceous-Tertiary boundary: evidence from the subtropical North Atlantic [J]. Special Papers—Geological Society of America, 2002. DOI:10.1130/0-8137-2356-6.277.
doi: 10.1130/0-8137-2356-6.277
|
31 |
ALEGRET L, THOMAS E. Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(1/2): 59-83.
|
32 |
KELLER G, KHOZYEM H, ADATTE T, et al. Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus [J]. Geological Magazine, 2013, 150(5): 885-907.
|
33 |
HUBER B T, MACLEOD K G, TUR N A. Chronostratigraphic framework for upper Campanian-Maastrichtian sediments on the Blake Nose (subtropical North Atlantic) [J]. The Journal of Foraminiferal Research, 2008, 38 (2): 162-182.
|
34 |
GEORGESCU M D, HUBER B T. Early evolution of the Cretaceous serial planktic foraminifera (Late Albian-Cenomanian) [J]. The Journal of Foraminiferal Research, 2009, 39(4): 335-360.
|
35 |
J-P BELLIER, MOULLADE M. Lower Cretaceous planktonic foraminiferal biostratigraphy of the western North Atlantic (ODP Leg 171B), and taxonomic clarification of key index species [J]. Revue de Micropaléontologie, 2002, 45(1): 9-26.
|
36 |
HUBER B T, LECKIE R M. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections[J]. Journal of Foraminiferal Research, 2011, 41(1): 53-95.
|
37 |
BROWNING E L, WATKINS D K. Elevated primary productivity of calcareous nannoplankton associated with Ocean Anoxic Event 1b during the Aptian/Albian transition (Early Cretaceous)[J]. Paleoceanography, 2008, 23(2). DOI:10.1029/2007PA001413.
doi: 10.1029/2007PA001413
|
38 |
BRACE B J, WATKINS D K. Evolution of the calcareous nannofossil genus Biscutum in the middle to Upper Cretaceous North American mid-latitudes [J]. Micropaleontology, 2014, 60(4): 445-463.
|
39 |
SHAMROCK J L, WATKINS D K. Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance [J]. Cretaceous Research, 2009, 30(5): 1 083-1 102.
|
40 |
GUERNET C, J-P BELLIER. Ostracodes Paléocènes et éocènes du Blake Nose (Leg ODP 171B) et évolution des environnements bathyaux au large de la Floride [J]. Revue de Micropaléontologie, 2000, 43(4): 249-279.
|
41 |
MAJORAN S. Palaeoenvironment of Maastrichtian ostracods from ODP Holes 1049B, 1050C and 1052E in the western North Atlantic[J]. Journal of Micropalaeontology, 1999, 18 (2): 125-136.
|
42 |
THUY B, GALE A S, KROH A, et al. Ancient origin of the modern deep-sea fauna [J]. PLoS ONE, 2012, 7(10): e46913.
|
43 |
ALEXANDRE J T, GILST R I VAN, RODRíGUEZ‐LóPEZ J P, et al. The sedimentary expression of Oceanic Anoxic Event 1b in the North Atlantic [J]. Sedimentology, 2011, 58(5): 1 217-1 246.
|
44 |
KLAUS A, NORRIS R D, KROON D, et al. Impact-induced mass wasting at the KT boundary: Blake Nose, western North Atlantic [J]. Geology, 2000, 28(4): 319-322.
|
45 |
HAN Zhiyan, HU Xiumian, JI Junfeng, et al. Origin of the Aptian-Albian high cyclic oceanic red beds in the ODP Hole 1049C, North Atlantic: mineralogical evidence[J]. Acta Geologica Sinica, 2008, 82(1): 124-132.
|
|
韩志艳, 胡修棉, 季峻峰, 等. 北大西洋ODP1049C孔Aptian-Albian 期高频旋回大洋红层的成因: 矿物学证据 [J]. 地质学报, 2008, 82(1): 124-132.
|
46 |
LI X, CAI Y. Constraining the colouration mechanisms of Cretaceous Oceanic Red Beds using diffuse reflectance spectroscopy [J]. Cretaceous Research, 2013, 46: 257-266.
|
47 |
LI X, HU X, CAI Y, et al. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic [J]. Sedimentary Geology, 2011, 235(1/2): 91-99.
|
48 |
HU X, SCOTT R W, CAI Y, et al. Cretaceous Oceanic Red Beds (CORBs): different time scales and models of origin [J]. Earth-Science Reviews, 2012, 115(4): 217-248.
|
49 |
MARTíNEZ-RUIZ F, ORTEGA-HUERTAS M, PALOMO I, et al. Cretaceous-Tertiary boundary at Blake Nose (Ocean drilling Program Leg 171B): a record of the Chicxulub impact ejecta[J]. Special Papers—Geological Society of America, 2002. DOI:10.1130/0-8137-2356-6.189.
doi: 10.1130/0-8137-2356-6.189
|
50 |
MARTINEZ-RUIZ F, ORTEGA-HUERTAS M, PALOMO-DELGADO I, et al. KT boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits [J]. Geological Society, London, Special Publications, 2001, 183(1): 149-161.
|
51 |
MARTíNEZ-RUIZ F, ORTEGA-HUERTAS M, Climate PALOMO I., tectonics and meteoritic impact expressed by clay mineral sedimentation across the Cretaceous-Tertiary boundary at Blake Nose, Atlantic northwestern [J]. Clay Minerals, 2001, 36(1): 49-60.
|
52 |
KUYPERS M M, BLOKKER P, ERBACHER J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event [J]. Science, 2001, 293(5 527): 92-95.
|
53 |
FONTORBE G, FRINGS P J, CHRISTINA L, et al. A silicon depleted North Atlantic since the Palaeogene: evidence from sponge and radiolarian silicon isotopes[J]. Earth and Planetary Science Letters, 2016, 453: 67-77.
|
54 |
HUBER B T, MACLEOD K G, GR?CKE D R, et al. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic [J]. Paleoceanography, 2011, 26(4). DOI:10.1029/2011PA002178.
doi: 10.1029/2011PA002178
|
55 |
QUILLéVéRé F, NORRIS R D, KROON D, et al. Transient ocean warming and shifts in carbon reservoirs during the early Danian [J]. Earth and Planetary Science Letters, 2008, 265 (3/4): 600-615.
|
56 |
ERBACHER J, HUBER B T, NORRIS R D, et al. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period [J]. Nature, 2001, 409(6 818): 325-327.
|
57 |
MACLEOD K G, HUBER B T, FULLAGAR P D. Evidence for a small (~0.000030) but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous-Tertiary boundary[J]. Geology, 2001, 29 (4): 303-306.
|
58 |
MACLEOD K G, FULLAGAR P D, HUBER B T. 87Sr/86Sr test of the degree of impact-induced slope failure in the Maastrichtian of the western North Atlantic [J]. Geology, 2003, 31(4): 311-314.
|
59 |
KUYPERS M M, BLOKKER P, HOPMANS E C, et al. Archaeal remains dominate marine organic matter from the early Albian Oceanic Anoxic Event 1b [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 185(1/2): 211-234.
|
60 |
BARKER C E, PAWLEWICZ M, COBABE E A. Deposition of sedimentary organic matter in black shale facies indicated by the geochemistry and petrography of high-resolution samples, Blake Nose, western North Atlantic[J]. Geological Society, London, Special Publications, 2001, 183(1): 49-72.
|
61 |
WAGNER T, HERRLE J O, DAMSTE? J S S, et al. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic [J]. Geology, 2008, 36(3): 203-206.
|
62 |
SCHOUTEN S, HOPMANS E C, FORSTER A, et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids [J]. Geology, 2003, 31(12): 1 069-1 072.
|
63 |
VILLASANTE‐MARCOS V, MARTíNEZ‐RUIZ F, OSETE M L, et al. Magnetic characterization of Cretaceous‐Tertiary boundary sediments[J]. Meteoritics & Planetary Science, 2007, 42(9): 1 505-1 527.
|
64 |
MOUNTAIN G, PROUST J, MCINROY D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 349 [C]. College Station, TX: Integrated Ocean Drilling Program, 2010.
|
65 |
ECORD Science Operator ESO. PANGAEA [DB/OL]. [2020-10-11]. .
URL
|
66 |
MOUNTAIN G, PROUST J, MCINROY D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 349[C]// College Station, TX: Integrated Ocean Drilling Program, 2010.
|
67 |
PRADER S, KOTTHOFF U, MCCARTHY F M G, et al. Vegetation and climate development of the New Jersey hinterland during the late Middle Miocene (IODP Expedition 313 Site M0027)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 854-868.
|
68 |
FANG L, BJERRUM C J, HESSELBO S P, et al. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313) [J]. Geosphere, 2013, 9: 1 303-1 318.
|
69 |
KOTTHOFF U, GREENWOOD D, MCCARTHY F, et al. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027) [J]. Climate of the Past, 2014, 10: 1 523-1 539.
|
70 |
MCCARTHY F M, KATZ M E, KOTTHOFF U, et al. Sea-level control of New Jersey margin architecture: palynological evidence from Integrated Ocean Drilling Program Expedition 313 [J]. Geosphere, 2013, 9: 1 457-1 487.
|
71 |
KATZ M E, BROWNING J V, MILLER K G, et al. Paleobathymetry and sequence stratigraphic interpretations from benthic foraminifera: insights on New Jersey shelf architecture, IODP Expedition 313 [J]. Geosphere, 2013, 9: 1 488-1 513.
|
72 |
MILLER K G, SUGARMAN P J, BROWNING J V, et al. Pleistocene sequence stratigraphy of the shallow continental shelf, offshore New Jersey: constraints of Integrated Ocean Drilling Program Leg 313 core holes [J]. Geosphere, 2013, 9: 74-95.
|
73 |
BROWNING J V, MILLER K G, SUGARMAN P J, et al. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations [J]. Geosphere, 2013, 9: 1 434-1 456.
|
74 |
J-N PROUST, POUDEROUX H, ANDO H, et al. Facies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: results from IODP-ICDP Expedition 313 [J]. Geosphere, 2018, 14: 1 564-1 591.
|
75 |
KOMINZ M, MILLER K, BROWNING J, et al. Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional backstripping: a case for both eustasy and epeirogeny [J]. Geosphere, 2016, 12: 1 437-1 456.
|
76 |
NILSSON A, LEE Y S, SNOWBALL I, et al. Magnetostratigraphic importance of secondary chemical remanent magnetizations carried by greigite (Fe3S4) in Miocene sediments, New Jersey shelf (IODP Expedition 313) [J]. Geosphere, 2013, 9: 510-520.
|
77 |
PIERRE C, M-M BLANC-VALLERON, BOUDOUMA O, et al. Carbonate and silicate cementation of siliciclastic sediments of the New Jersey shelf (IODP Expedition 313): relation with organic matter diagenesis and submarine groundwater discharge [J]. Geo-Marine Letters, 2017, 37: 537-547.
|
78 |
GELDERN R VAN, HAYASHI T, B?TTCHER M E, et al. Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: methane formation and fluid origin [J]. Geosphere, 2013, 9: 96-112.
|
79 |
LOFI J, INWOOD J, J-N PROUST, et al. Fresh-water and salt-water distribution in passive margin sediments: insights from Integrated Ocean Drilling Program Expedition 313 on the New Jersey Margin [J]. Geosphere, 2013, 9: 1 009-1 024.
|
80 |
COSGROVE G I, HODGSON D M, MOUNTNEY N P, et al. High-resolution correlations of strata within a sand-rich clinothem using grain fabric data, offshore New Jersey, USA [J]. Geosphere, 2019, 15: 1 291-1 322.
|
81 |
HODGSON D M, BROWNING J V, MILLER K G, et al. Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey [J]. Geosphere, 2018, 14: 95-114.
|
82 |
MILLER K G, BROWNING J V, MOUNTAIN G S, et al. Sequence boundaries are impedance contrasts: core-seismic-log integration of Oligocene-Miocene sequences, New Jersey shallow shelf [J]. Geosphere, 2013, 9: 1 257-1 285.
|
83 |
INWOOD J, LOFI J, DAVIES S, et al. Statistical classification of log response as an indicator of facies variation during changes in sea level: Integrated Ocean Drilling Program Expedition 313 [J]. Geosphere, 2013, 9: 1 025-1 043.
|
84 |
MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf [J]. Geosphere, 2013, 9: 1 236-1 256.
|
85 |
KINOSHITA M, TOBIN H, ASHI J, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 314/315/316 [C]// College Station, TX: Integrated Ocean Drilling Program, 2009.
|
86 |
Institute for Marine-Earth Exploration and Engineering (MarE3). Japanese Database System (J-CORES) [DB/OL].[2021-01-15]. .
URL
|
87 |
KOPF A, ARAKI E, TOCZKO S, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 332 [C]//College Station, TX: Integrated Ocean Drilling Program, 2011.
|
88 |
STRASSER M, DUGAN B, KANAGAWA K, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 338 [C]// College Station, TX: Integrated Ocean Drilling Program, 2014.
|
89 |
TOBIN H, HIROSE T, SAFFER D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 348 [C]// College Station, TX: Integrated Ocean Drilling Program, 2015.
|
90 |
TOBIN H, HIROSE T, IKARI M, et al. Proceedings of the International Ocean Discovery Program, expedition reports, 358 [C]// College Station, TX: International Ocean Discovery Program, 2020.
|
91 |
KINOSHITA M, TOBIN H, ASHI J, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 314/315/316 [C]// College Station, TX: Integrated Ocean Drilling Program, 2009.
|
92 |
STRASSER M, DUGAN B, KANAGAWA K, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 338 [C]// College Station, TX: Integrated Ocean Drilling Program, 2014.
|
93 |
TOBIN H, HIROSE T, SAFFER D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 348 [C]// College Station, TX: Integrated Ocean Drilling Program, 2015.
|
94 |
MATSUZAKI K M, SUZUKI N, NISHI H, et al. Early to Middle Pleistocene paleoceanographic history of southern Japan based on radiolarian data from IODP Exp. 314/315 Sites C0001 and C0002 [J]. Marine Micropaleontology, 2015, 118: 17-33.
|
95 |
BUCHS D M, CUKUR D, MASAGO H, et al. Sediment flow routing during formation of forearc basins: constraints from integrated analysis of detrital pyroxenes and stratigraphy in the Kumano Basin, Japan [J]. Earth and Planetary Science Letters, 2015, 414: 164-175.
|
96 |
USMAN M O, MASAGO H, WINKLER W, et al. Mid-Quaternary decoupling of sediment routing in the Nankai Forearc revealed by provenance analysis of turbiditic sands [J]. International Journal of Earth Sciences, 2014, 103: 1 141-1 161.
|
97 |
HüPERS A, GRATHOFF G, WARR L, et al. Spatiotemporal characterization of smectite-to-illite diagenesis in the Nankai Trough accretionary prism revealed by samples from 3 km below seafloor[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 933-951.
|
98 |
SCHLEICHER A M, JURADO M J. Linking faults, fractures, and clay mineral occurrence with fluid transport in the accretionary prism of the Nankai Trough, Japan [J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 4 599-4 612.
|
99 |
TAKAHASHI M, AZUMA S, ITO H, et al. Frictional properties of the shallow Nankai Trough accretionary sediments dependent on the content of clay minerals [J]. Earth, Planets and Space, 2014, 66: 1-13.
|
100 |
UNDERWOOD M B, GUO J. Clay-mineral assemblages across the Nankai-Shikoku subduction system, offshore Japan: a synthesis of results from the NanTroSEIZE project [J]. Geosphere, 2018, 14: 2 009-2 043.
|
101 |
JAEGER D, STALDER R, MASAGO H, et al. OH defects in quartz as a provenance tool: application to fluvial and deep marine sediments from SW Japan [J]. Sedimentary Geology, 2019, 388: 66-80.
|
102 |
TOKI T, KINOSHITA M, MORITA S, et al. The vertical chloride ion profile at the IODP Site C0002, Kumano Basin, off coast of Japan [J]. Tectonophysics, 2017, 710: 88-96.
|
103 |
TOKI T, UEHARA Y, KINJO K, et al. Methane production and accumulation in the Nankai accretionary prism: results from IODP Expeditions 315 and 316[J]. Geochemical Journal, 2012, 46: 89-106.
|
104 |
FUKUCHI R, YAMAGUCHI A, YAMAMOTO Y, et al. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3 185-3 196.
|
105 |
HAMMERSCHMIDT S B, WIERSBERG T, HEUER V B, et al. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin [J]. Geochemical Transactions, 2014, 15: 1-15.
|
106 |
SHI M, WU H, ROBERTS A P, et al. Tectonic, climatic, and diagenetic control of magnetic properties of sediments from Kumano Basin, Nankai margin, southwestern Japan [J]. Marine Geology, 2017, 391: 1-12.
|
107 |
KANAMATSU T, PARéS J M, KITAMURA Y. Pliocene shortening direction in Nankai trough off Kumano, southwest Japan, sites IODP C0001 and C0002, expedition 315: anisotropy of magnetic susceptibility analysis for paleostress [J]. Geochemistry, Geophysics, Geosystems, 2012, 13. DOI:10.1029/2011GC003782.
doi: 10.1029/2011GC003782
|
108 |
BYRNE T B, LIN W, TSUTSUMI A, et al. Anelastic strain recovery reveals extension across SW Japan subduction zone [J]. Geophysical Research Letters, 2009, 36. DOI:10.1029/2009GL040749.
doi: 10.1029/2009GL040749
|
109 |
OOHASHI K, LIN W, WU H Y, et al. Stress state in the Kumano Basin and in slope sediment determined from anelastic strain recovery: results from IODP expedition 338 to the Nankai Trough[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3 608-3 616.
|
110 |
GUO J, UNDERWOOD M B, LIKOS W J, et al. Apparent overconsolidation of mudstones in the Kumano Basin of southwest Japan: implications for fluid pressure and fluid flow within a forearc setting[J]. Geochemistry, Geophysics, Geosystems, 2013, 14: 1 023-1 038.
|
111 |
KITAMURA M, HIROSE T. Strength determination of rocks by using indentation tests with a spherical indenter [J]. Journal of Structural Geology, 2017, 98: 1-11.
|
112 |
DAIGLE H, DUGAN B. Pore size controls on the base of the methane hydrate stability zone in the Kumano Basin, offshore Japan[J]. Geophysical Research Letters, 2014, 41: 8 021-8 028.
|
113 |
KITAJIMA H, SAFFER D, SONE H, et al. In situ stress and pore pressure in the deep interior of the Nankai accretionary prism, Integrated Ocean Drilling Program site C0002 [J]. Geophysical Research Letters, 2017, 44: 9 644-9 652.
|
114 |
MIYAKAWA A, SAITO S, YAMADA Y, et al. Gas hydrate saturation at site C0002, IODP expeditions 314 and 315, in the Kumano Basin, Nankai trough [J]. Island Arc, 2014, 23: 142-156.
|
115 |
LIN W, HIROSE T, TADAI O, et al. Thermal conductivity profile in the Nankai Accretionary Prism at IODP NanTroSEIZE site C0002: estimations from High-Pressure experiments using input site sediments [J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2020GC009108.
|
116 |
RAIMBOURG H, HAMANO Y, SAITO S, et al. Acoustic and mechanical properties of Nankai accretionary prism core samples [J]. Geochemistry, Geophysics, Geosystems, 2011, 12. .
URL
|
117 |
TAKAHASHI M, AZUMA S, UEHARA S, et al. Contrasting hydrological and mechanical properties of clayey and silty muds cored from the shallow Nankai Trough accretionary prism [J]. Tectonophysics, 2013, 600: 63-74.
|
118 |
KITAMURA M, KITAJIMA H, SONE H, et al. Strength profile of the inner Nankai accretionary prism at IODP site C0002 [J]. Geophysical Research Letters, 2019, 46: 10 791-10 799.
|
119 |
LEE H, CHANG C, ONG S H, et al. Effect of anisotropic borehole wall failures when estimating in situ stresses: a case study in the Nankai accretionary wedge [J]. Marine and Petroleum Geology, 2013, 48: 411-422.
|
120 |
CHANG C, SONG I. Present‐day stress states underneath the Kumano basin to 2 km below seafloor based on borehole wall failures at IODP site C0002, Nankai accretionary wedge [J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 4 289-4 307.
|
121 |
SONG I, CHANG C. In situ stress conditions at IODP Site C0002 reflecting the tectonic evolution of the sedimentary system near the seaward edge of the Kumano basin, offshore from SW Japan [J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4 033-4 052.
|
122 |
WU H, CHAN C, KINOSHITA M, et al. Stress field observation and modeling from the NanTroSEIZE scientific drillings in the Nankai Trough system, SW Japan [J]. Tectonophysics, 2013, 600: 99-107.
|
123 |
WU H, CHAN C, SHIRAISHI K, et al. Observed stress state for the IODP Site C0002 and implication to the stress field of the Nankai Trough subduction zone [J]. Tectonophysics, 2019, 765: 1-10.
|
124 |
CHANG C, MCNEILL L C, MOORE J C, et al. In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures [J]. Geochemistry, Geophysics, Geosystems, 2010, 11: Q0AD04.
|
125 |
LEWIS J C, BYRNE T B, KANAGAWA K. Evidence for mechanical decoupling of the upper plate at the Nankai subduction zone: constraints from core-scale faults at NantroSEIZE sites C0001 and C0002 [J]. Geochemistry, Geophysics, Geosystems, 2013, 14: 620-633.
|
126 |
LI C, LIN J, KULHANEK D, et al. Proceedings of the International Ocean Discovery Program, expedition reports, 349 [C]//College Station, TX: International Ocean Discovery Program, 2014.
|
127 |
LI C, LIN J, KULHANEK D, et al. Proceedings of the International Ocean Discovery Program, expedition research results, 349 [C]// College Station, TX: International Ocean Discovery Program, 2014.
|
128 |
MIAO Y, WARNY S, CLIFT P D, et al. Evidence of continuous Asian summer monsoon weakening as a response to global cooling over the last 8 Ma [J]. Gondwana Research, 2017, 52: 48-58.
|
129 |
MIAO Y, WARNY S, CLIFT P D, et al. Climatic or tectonic control on organic matter deposition in the South China Sea? a lesson learned from a comprehensive Neogene palynological study of IODP site U1433 [J]. International Journal of Coal Geology, 2018, 190: 166-177.
|
130 |
MIAO Y, WARNY S, LIU C, et al. Neogene fungal record from IODP site U1433, South China Sea: implications for paleoenvironmental change and the onset of the Mekong River [J]. Marine Geology, 2017, 394: 69-81.
|
131 |
DUAN Z, LIU Q, GAI C, et al. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 82-97.
|
132 |
LIU C, CLIFT P D, MURRAY R W, et al. Geochemical evidence for initiation of the modern Mekong Delta in the southwestern South China Sea after 8 Ma [J]. Chemical Geology, 2017, 451: 38-54.
|
133 |
YANG F, HUANG X, XU Y, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea [J]. Journal of Petrology, 2019, 60: 1 135-1 162.
|
134 |
DING W, CHEN Y, SUN Z, et al. Chemical compositions and precipitation timing of basement calcium carbonate veins from the South China Sea [J]. Marine Geology, 2017, 392: 170-178.
|
135 |
ZHANG G, LUO Q, ZHAO J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea [J]. Earth and Planetary Science Letters, 2018, 489: 145-155.
|
136 |
ZHONG Y, ZHANG G, JIN Q, et al. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes [J]. Science Bulletin, 2020, 66: 740-748.
|
137 |
DUAN Z, LIU Q, QIN H, et al. Behavior of greigite-bearing marine sediments during AF and thermal demagnetization and its significance [J]. Geochemistry, Geophysics, Geosystems, 2020, 21:ee2019GC008635.
|
138 |
LI C, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15: 4 958-4 983.
|
139 |
SUN Z, DING W, ZHAO X, et al. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data [J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 9 980-9 998.
|
140 |
ZHANG Y, LIANG P, XIE X, et al. Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 125-132.
|
141 |
RENAUDIE J, LAZARUS D, DIVER P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy [J]. Palaeontologia Electronica, 2020, 23(1): a11.
|
142 |
PETERS S, KELLY D, FRAASS A. Oceanographic controls on the diversity and extinction of planktonic foraminifera [J]. Nature, 2013, 493: 398-401.
|
143 |
DAVIES T A, HAY W W, SOUTHAM J R, et al. Estimates of Cenozoic oceanic sedimentation rates [J]. Science, 1977, 197: 53-55.
|
144 |
WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years [J]. Science, 2020, 369: 1 383-1 387.
|
145 |
MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records [J]. Science Advances, 2020, 6: eaaz1346.
|
146 |
KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for Rare-Earth Elements [J]. Nature Geoscience, 2011, 4: 535-539.
|