地球科学进展 ›› 2021, Vol. 36 ›› Issue (6): 643 -662.

IODP研究 上一篇    

国际大洋钻探科学数据的现状、特征及其汇编的科学意义
马鹏飞 1( ),刘志飞 1,拓守廷 1, 2,蒋璟鑫 3,许艺炜 3,胡修棉 3   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092
    2.国际大洋发现计划中国办公室,上海 200092
    3.南京大学地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2021-03-17 修回日期:2021-04-28 出版日期:2021-06-10
  • 基金资助:
    国家自然科学基金指南引导类原创探索计划项目“沉积物知识图谱及其知识演化研究”(42050102);国家自然科学基金青年科学基金项目“南海北部渐新世洋陆过渡带构造演化的沉积响应研究”(41806053)

Present Status Characteristics and Compilation Significance for the Data of Scientific Ocean Drilling

Pengfei MA 1( ),Zhifei LIU 1,Shouting TUO 1, 2,Jingxin JIANG 3,Yiwei XU 3,Xiumian HU 3   

  1. 1.State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
    2.International Ocean Discovery Program,China-Office,Shanghai 200092,China
    3.School of Earth Sciences and Engineering,Nanjing University,Nanjing 210023,China
  • Received:2021-03-17 Revised:2021-04-28 Online:2021-06-10 Published:2021-07-22
  • About author:MA Pengfei (1990-), male, Weifang City, Shandong Province, Associate professor. Research areas include sedimentology. E-mail: pma@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Study of knowledge graph and knowledge evolution based on oceanic sediments"(42050102);"Sedimentary response to Oligocene tectonic evolution of the continent-ocean transition zone in the northern South China Sea"(41806053)

国际大洋钻探50余年来已执行297个航次,累计采集长度超过4×105 m的岩芯,同时获取大量观测数据。然而,这些岩芯样品测试和观测数据却以多源、异构的形式散布在不同文献和数据库中,无法做到广泛共享和高效利用。通过系统调研国际大洋钻探各阶段的航次报告、数据库以及学术论著等资料,理清了数据分布、数据载体及数据类型等现状。认为大洋钻探科学数据包括船上数据和航次后数据两大部分,共在表、图、文中包含了钻井取芯、岩石地层特征、沉积学、矿物学、古生物学、地层学、地球化学、构造地质学和地球物理学等15类近200项数据类型。研究发现国际大洋钻探现有数据体系具有层次清晰、时空属性明确、来源简单又复杂、存储格式多样、类型一致又多样等特征,是地球科学领域典型的科学大数据。开展国际大洋钻探科学数据的汇编除可实现数据快速获取外,也具有重要的科学意义,不仅有潜力解决海洋生物演化、全球物质循环、古海洋与古气候、深海矿产资源评价等方面的重大科学问题,还能为推动地球科学研究范式的变革做出积极贡献。最后,就国际大洋钻探科学数据统一格式和汇编建库这一关键步骤提出了具体建议。

Since the 1960s, 297 expeditions carried out by Scientific Ocean Drilling have recovered more than 4×105 meters of cores and collected a large amount of data. However, the data based on core sample testing and direct observation are scattered in different documents and databases in a heterogeneous format, which hinders the extensive sharing and effective use of them. Through systematic investigation of the official reports, databases, and academic papers of the four stages of Scientific Ocean Drilling, we show the present status of these scientific data including their sources, storage media, and specific types. The data of Scientific Ocean Drilling mainly consist of shipboard and post-expedition results. Nearly 200 data types classified into 15 categories including coring summary, lithostratigraphy, sedimentology and mineralogy, paleontology, stratigraphy, geochemistry, structural geology, geophysics, etc. are recorded in tables, figures, and texts. We find that these scientific data are hierarchically organized and have specific spatial-temporal properties; their sources are both straightforward and complex with different storage formats; and data types of different sites are not only consistent but also diverse. The data of Scientific Ocean Drilling are typical scientific big data in the field of earth sciences. Meanwhile, it is believed that the compilation of the Scientific Ocean Drilling Data would be of significance for fast data acquisition and future studies. This step not only has the potential to solve major scientific problems in the field of Earth science such as long-term biological evolution, global material circulation, paleoclimate and paleoceanography, and deep-sea mineral resource evaluation, but may contribute to the transformation of scientific research paradigm as well. Meanwhile, a proposal for data format unification and data compilation is also presented here.

中图分类号: 

表1 国际大洋钻探 4个阶段的工作量总结
Table 1 Expedition statistics for the four stages of Scientific Ocean Drilling
图1 国际大洋钻探站位、钻孔、岩芯、岩芯段、样品命名规则
Fig. 1 IODP conventions for naming site hole core section and sample
图2 船上数据(a)与增加航次后研究的完整数据(b)关系示意图
Fig. 2 Schematic diagram of the relationship between a shipboard data and b complete data with post-expedition studies
表2 国际大洋钻探 4个阶段的数据分布
Table 2 Data sources for the four stages of Scientific Ocean Drilling
图3 国际大洋钻探船上数据和航次后数据分布
Fig. 3 Data resources for shipboard and post-expedition studies of Scientific Ocean Drilling
表3 国际大洋钻探数据存储位置及数据载体总结
Table 3 Summary table for locations and storage media of Scientific Ocean Drilling data
图4 国际大洋钻探数据来源
Fig. 4 Data resources of Scientific Ocean Drilling
表4 国际大洋钻探典型站位科学数据类型统计
Table 4 Data types of the four representative sites of Scientific Ocean Drilling
DSDP 530 ODP 1049 IODP
M0027 C0002 U1433
船上 数据 官方 报告 钻井取芯 统计 钻孔经纬度 9 10 钻孔经纬度 10 24 钻孔经纬度 64 65 钻孔经纬度 85 ~ 90 钻孔经纬度 10 126
钻孔水深 9 10 钻孔水深 10 24 钻孔水深 64 65 钻孔水深 85 ~ 90 钻孔水深 10 126
岩芯编号 9 10 岩芯编号 10 24 岩芯编号 64 65 岩芯编号 85 86 88 ~ 90 岩芯编号 10 126
取芯深度 9 10 取芯深度 10 24 取芯深度 64 65 取芯深度 85 86 88 ~ 90 取芯深度 10 126
进尺长度 9 10 进尺长度 10 24 进尺长度 64 65 进尺长度 85 86 88 ~ 90 进尺长度 10 126
取芯长度 9 10 取芯长度 10 24 取芯长度 64 65 取芯长度 85 86 88 ~ 90 取芯长度 10 126
取芯率 9 10 取芯率 10 24 取芯率 64 65 取芯率 85 86 88 ~ 90 取芯率 10 126
岩芯段数量 9 岩芯段数量 10 24 岩芯段数量 64 65 岩芯段数量 85 86 88 ~ 90 岩芯段数量 10 126
岩石地层 分层 沉积物分层 9 沉积物分层 24 沉积物分层 64 65 沉积物分层 85 88 ~ 90 沉积物分层 10 126
玄武岩分层 9 深度范围 24 深度范围 64 65 深度范围 85 88 ~ 90 玄武岩分层 10 126
深度范围 9 年龄范围 24 年龄范围 64 65 年龄范围 85 88 ~ 90 深度范围 10 126
年龄范围 9 岩性总结 24 岩性总结 64 65 岩性总结 85 88 ~ 90 年龄范围 10 126
岩性总结 9 - - - 岩性总结 10 126
沉积物 宏观描述 照片 9 10 照片 10 照片 64 65 照片 85 86 88 ~ 90 照片 10 126
岩性 9 岩性 24 岩性 64 65 岩性 85 86 88 ~ 90 岩性 10 126
矿物组成 9 矿物组成 10 24 矿物组成 64 65 矿物组成 85 86 88 ~ 90 矿物组成 10 126
颜色 9 颜色 24 颜色 64 65 颜色 85 86 88 ~ 90 颜色 10 126
粒径 9 层厚 24 粒径 64 65 成岩作用 85 86 88 ~ 90 成岩作用 10 126
层厚 9 顶底接触 24 分选 64 65 层厚 88 89 粒径 10 126
顶底接触 9 沉积构造 24 圆度 64 65 顶底接触 85 86 88 89 分选 10 126
沉积构造 9 生物扰动 24 层厚 64 65 沉积构造 85 86 88 89 圆度 10 126
生物扰动 9 - 顶底接触 64 65 生物扰动 85 86 88 89 层厚 10 126
- - 沉积构造 64 65 - 顶底接触 10 126
- - 生物扰动 64 65 - 沉积构造 10 126
- - - - 生物扰动 10 126
沉积物 薄片 - - 照片 65 照片 86 88 90 照片 10 126
- - 岩性 64 65 岩性 88 90 岩性 10 126
- - 矿物组成 64 65 粒度组分 88 90 粒度组分 10 126
- - - 成因组分 88 90 成因组分 10 126
- - - 矿物组成 88 90 矿物组成 10 126
- - - - 圆度 10 126
沉积物 涂片 岩性 9 岩性 10 24 照片 65 照片 85 86 88 ~ 90 照片 10 126
粒度组分 9 粒度组分 10 24 岩性 64 65 岩性 85 88 ~ 90 岩性 10 126
成因组分 9 矿物组成 10 24 粒度组分 64 65 粒度组分 85 88 ~ 90 粒度组分 10 126
矿物组成 9 - - 成因组分 85 88 ~ 90 成因组分 10 126
- - - 矿物组成 85 88 ~ 90 矿物组成 10 126
- - - 圆度 85 88 ~ 90 圆度 10 126

玄武岩

宏观描述

照片 9 - - - 照片 10 126
岩性 9 - - - 岩性 10 126
矿物组成 9 - - - 矿物组成 10 126
接触特征 9 - - - 接触特征 10 126
结构 9 - - - 结构 10 126
基质特征 9 - - - 基质特征 10 126
气孔特征 9 - - - 气孔特征 10 126
蚀变特征 9 - - - 蚀变特征 10 126
玄武岩 薄片 - - - - 照片 10 126
- - - - 岩性 10 126
- - - - 粒度特征 10 126
- - - - 结构 10 126
- - - - 矿物组成 10 126
- - - - 矿物特征 10 126
- - - - 气孔特征 10 126
- - - - 蚀变特征 10 126
生物 地层学 类型:钙质超微化石;有孔虫放射虫;硅藻 9 类型:钙质超微化石;有孔虫;放射虫 10 24 类型:钙质超微化石、有孔虫、沟边藻、孢粉 64 65 类型:钙质超微化石、浮游有孔虫、放射虫 85 86 88 ~ 90 类型:钙质超微化石;浮游有孔虫;放射虫 126
保存状况 9 保存状况 10 24 保存状况 64 65 保存状况 85 86 88 ~ 90 保存状况 10 126
数量 9 数量 10 24 数量 64 65 数量 85 86 88 ~ 90 数量 10 126
种属 9 种属 10 24 种属 64 65 种属 85 86 88 ~ 90 种属 10 126
化石带 9 化石带 10 24 化石带 64 65 化石带 85 86 88 ~ 90 化石带 10 126
生物地层事件 9 生物地层事件 10 24 生物地层事件 64 65 生物地层事件 85 88 ~ 90 生物地层事件 126
年龄点 9 年龄点 10 24 年龄点 64 65 年龄点 85 88 ~ 90 年龄点 126
- - 环境意义 64 65 - -
构造 地质学 脉体填充物特征 9 - - 构造类型 85 86 88 ~ 90 构造类型 10 126
- - - 破裂产状 85 86 88 ~ 90 断层岩类型 10 126
- - - 脉体特征 85 86 88 ~ 90 碎裂变形特征 10 126
- - - 脉体填充物特征 88 ~ 90 裂隙特征 10 126
- - - 剪切带特征 85 86 88 ~ 90 脉体特征 10 126
- - - 地层产状 85 86 88 ~ 90 脉体填充物特征 10 126
地球化学 碳酸钙 9 孔隙水主微量元素 10 24 孔隙水主微量 元素 64 65 孔隙水主微量元素及 同位素 85 86 88 89 孔隙水主微量元素 10 126
有机碳 9 岩芯顶空气组成 10 24 碳酸钙 64 65 岩芯顶空气组成 85 86 88 ~ 90 岩芯顶空气组成 10 126
有机氮 9 碳酸钙 10 24 有机碳 64 65 碳酸钙 85 86 88 ~ 90 碳酸钙 10 126
热解参数 9 有机碳 10 24 有机硫 64 65 有机碳 85 86 88 ~ 90 有机碳 10 126
蛋白石 9 有机氮 10 24 Sr同位素 64 65 有机氮 85 86 88 ~ 90 有机氮 10 126
- 有机硫 10 24 - 有机硫 85 86 88 89 热解参数 10 126
- 热解参数 10 24 - 沉积物主量元素 86 88 ~ 90 玄武岩主微量元素 10 126
- - - 甲烷C同位素 86 88 89 -
微生物学 - - - 污染测试 89 污染测试位置 126
- - - 细胞数量 85 -
古地磁学 自然剩磁 9 自然剩磁 10 24 自然剩磁 64 65 自然剩磁 85 86 88 ~ 90 自然剩磁 10 126
退磁结果 9 退磁结果 10 24 退磁结果 64 65 退磁结果 85 86 88 ~ 90 退磁结果 10 126
磁性地层学 9 磁性地层学 10 24 磁性地层学 64 65 磁性地层学 85 86 88 ~ 90 磁性地层学 126
岩芯物性 P波速度 9 颜色反射率 10 24 颜色反射率 64 65 颜色反射率 85 86 88 ~ 90 颜色反射率 10 126
抗剪强度 9 伽马密度 10 24 伽马密度 64 65 - 伽马密度 10 126
抗压强度 9 磁化率 10 24 磁化率 64 65 磁化率 88 ~ 90 磁化率 10 126
含水率 9 自然伽马 10 24 自然伽马 64 65 自然伽马 88 ~ 90 自然伽马 10 126
密度 9 热导率 10 24 热导率 64 65 热导率 85 86 88 89 热导率 10 126
声速 9 P波速度 10 24 P波速度 64 65 P波速度 85 86 88 90 P波速度 10 126
声阻抗 9 抗剪强度 10 24 抗剪强度 64 65 抗剪强度 85 86 抗剪强度 10 126
- 含水率 10 24 含水率 64 65 含水率 85 86 88 ~ 90 抗压强度 10 126
- 密度 10 24 密度 64 65 密度 85 86 88 90 含水率 10 126
- 电阻率 10 24 电阻率 64 65 电阻率 88 90 密度 10 126
- - 数字扫描 64 65 电导率 85 ~ 89 -
- - - 渗透率 89 -
测井 井径 8 9 - 自然伽马 8 64 井径 8 85 86 88 ~ 90 井径 8 126
自然伽马 8 9 - 电阻率 8 64 自然伽马 8 85 ~ 90 自然伽马 8 126
密度 8 9 - 电导率 8 64 光电 8 85 86 光电 8 126
电阻率 8 9 - 声波 8 64 密度 8 85 86 88 ~ 90 密度 8 126
中子 8 9 - 声波成像 8 64 电阻率 8 85 ~ 90 电阻率 8 126
感应电导率 8 9 - - 电导率 8 85 ~ 90 微电阻扫描 8 126
声波 8 9 - - 声波 8 85 86 88 ~ 90 声波 8 126
井下温度 8 9 - - 井下温度 85 井下温度 8 126
热流 8 9 - - P波速度 8 85 86 88 90 热流 8 126
- - - 孔隙度 8 85 86 -
- - - 介电常数 8 86 89 -
钻孔原位 观测 - - - 钻孔压力 86 -
- - - 孔隙压力 86 -
- - - 温度 86 -
- - - 涡振记录 86 -
航次后数据 官方报告 古生物学 有孔虫种属 9 有孔虫种属 25 - 浮游有孔虫种属 92 放射虫丰度 127
钙质超微化石种属 9 - - 钙质超微化石种属 92 浮游有孔虫丰度 127
硅藻种属 9 - - - -
- - - -
孢粉种属 9
地层学 磁性地层学 9 磁性地层学 25 - - -
沉积学、 矿物学 粒度 9 火山灰沉积特征 25 粒度 66 粒度 91 -
沉积相 9 沉积物全岩矿物 25 - 黏土矿物 91 - 93 -
黏土矿物 9 - - 岩屑岩性 92 -
黄铁矿特征 9 - - - -
玄武岩矿物学 9 - - - -
无机地球 化学 沉积物主微量元素 9 沉积物主微量元素 25 沉积物主微量 元素 66 孔隙水碘含量、 碘同位素 91 -
玄武岩主微量元素 9 孔隙水Sr同位素 25 - 孔隙水硼同位素 92 -
孔隙水主微量元素 9 - - - -
生物壳体C、O同位素 9 - - - -
有机地球 化学 烃类气体 9 磷组分 25 - - -
饱和烃特征 9 - - - -
脂肪烃特征 9 - - - -
芳香烃特征 9 - - - -
烯烃特征 9 - - - -
干酪根特征 9 - - - -
有机碳同位素 9 - - - -
岩芯物性 - - - P波、S波速度 91 -
- - - 固结测试结果 91 -
- - - 磁化率 91 -
- - - 孔隙度 92 -
- - - 渗透率 93 -
构造地 质学 - - - 岩芯变形构造和 脉体统计 93 -
期刊论文 古生物学 钙质超微化石种属 11 底栖有孔虫种属 26 ~ 29 孢粉种属 67 ~ 70 放射虫种属 94 孢粉组合 128 129
- 浮游有孔虫种属 29 ~ 36 底栖有孔虫种属 71 72 - 真菌组合 130
- 钙质超微化石种属 29 37 ~ 39 沟鞭藻种属 70 - -
- 介形虫种属 40 41 - - -
- 深海动物群演化 42 - - -
地层学 - - 层序地层学 71 ~ 75 - 磁性地层学 131
- - 磁性地层学 76 - -
沉积学、 矿物学 黏土矿物 12 沉积物粒度 29 43 全岩矿物含量 77 78 砂岩骨架矿物 95 96 黏土矿物 132
- 沉积相 44 沉积相 71 72 74 75 79 ~ 84 重矿物 95 96 玄武岩全岩矿物 133
- 铁组分 45 沉积物粒度 80 黏土矿物 97 ~ 100 -
- 含铁矿物 45 ~ 47 - 石英OH缺陷特征 101 -
- 全岩矿物 48 ~ 50 - - -
- 黏土矿物 45 51 - - -
无机地球 化学 玄武岩主微量元素 13 C同位素 48 52 有孔虫壳体C同位素 68 单矿物元素组成 95 97 C、O、Sr同位素 134
沉积物主微量元素 14 15 Si同位素 53 碳酸盐组分C、O 同位素 77 78 伊利石K-Ar 同位素 97 沉积物全岩主微量 元素 132
碳酸钙含量 15 全岩C、O同位素 54 55 Sr同位素 73 孔隙水Cl含量 102 沉积物Sr-Nd同位素 132
Nd同位素 16 17 有孔虫壳体C、O 同位素 32 54 ~ 56 孔隙水的C、H、O、S同位素 78 孔隙水气体C 同位素 103 玄武岩全岩主微量 元素 133 135
Os同位素 18 有孔虫壳体Sr 同位素 57 58 - - 玄武岩Sr-Nd-Pb-Hf 同位素 135
- 主微量元素 43 48 ~ 50 - - 玄武岩斜长石元素含量 133
- - - - 玄武岩全岩Mg同位素 136
有机地球 化学 有机质含量、组分 15 19 20 有机质含量、组分 52 59 ~ 61 有机质含量、组分 68 镜质体反射率 104 -
热解参数 15 20 生物标志化物 52 59 60 有机C同位素 68 78 甲烷H同位素 105 -
生物标志化合物 15 20 有机C同位素 43 59 60 甲烷C同位素 78 - -
C同位素 15 正构烷烃C同位素 61 热解参数 68 - -
N同位素 21 古温标 62 - - -
磷组分 22 - - - -
鱼牙含量 22 - - - -
岩芯物性和地球 物理 磁组构 23 沉积物磁性特征 63 气体渗透率 79 磁性特征 106 107 磁性特征 137
- - - 非弹性恢复量 108 109 洋壳磁异常 138
- - - 固结测试结果 110 -
- - - 抗压强度 111 -
- - - 孔隙度 112 ~ 114 -
- - - 热导率 115 -
- - - 力学特征 116 117 -
- - - 水合物饱和度 114 -
- - - 岩石强度 118 119 -
- - - 应力特征 120 ~ 124 -
构造地质学 - - - 岩芯裂隙统计 125 岩芯裂隙统计 139
微生物学 - - - - 细菌群落结构 140
1 WANG Pinxian. Ocean drilling and marine geology in China [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 7-14.
汪品先. 大洋钻探与中国的海洋地质[J]. 海洋地质与第四纪地质, 2019, 39(1): 7-14.
2 YE Jianliang, ZHANG Wei, XIE Wenwei. Preliminary thoughts on implementation of the Ocean Drilling Project in China [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(2): 1-8.
叶建良, 张伟, 谢文卫. 我国实施大洋钻探工程的初步设想 [J]. 探矿工程:岩土钻掘工程, 2019, 46(2): 1-8.
3 MAXWELL A E, HERZEN R P VON, HSü J K, et al. Deep sea drilling in the South Atlantic [J]. Science, 1970, 168: 1 047-1 059.
4 SHACKLETON N, KENNETT J. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277,279, and 281 [C]// Initial reports of the Deep Sea Drilling Project, volume 29. Washington DC: U.S. Government Printing Office, 1975.
5 KROUS H, BROWN H, FARQUHARSON R. Sulfur isotopic composition in DSDP Leg 37 cores [C]// Initial reports of the Deep Sea Drilling Project, volume37. Washington DC: U.S. Government Printing Office, 1977.
6 LU Zhengbo, SHI Yukun, HUA Hong, et al. Current data administration and sharing of international scientific ocean drilling [J]. Geological Journal of China Universities, 2020, 26(4): 472-480.
鲁铮博, 史宇坤, 华洪, 等. 国际大洋科学钻探的数据资源与共享现状 [J]. 高校地质学报, 2020, 26(4): 472-480.
7 IODP Integrated Ocean Drilling Program. IODP depth scales terminology [Z/OL].[2021-01-15]. .
URL    
8 Lamont-Doherty Earth Observatory, Columbia University. Logging data of scientific ocean drilling [DB/OL]. [2021-01-08]. .
URL    
9 HAY W, SIBUET J, BARRON E, et al. Initial reports of the Deep Sea Drilling Project 75 [C]. Washington DC: U.S. Government Printing Office, 1984.
10 JOIDES Resolution Science Operator JRSO. Laboratory Information Management System (LIMS) [DB/OL]. .
URL    
11 MONTE GUERRA R DO, CONCHEYRO A, WISE S. New latitude-based nannofossil zonations for the campanian-maastrichtian of the South Atlantic Ocean and their paleoceanographic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 452:55-67.
12 ROBERT C, CHAMLEY H. Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments[J]. Global and Planetary Change, 1991, 3(4): 315-331.
13 HUMPHRIS S, THOMPSON G. Geochemistry of Rare Earth Elements in basalts from the Walvis Ridge: implications for its origin and evolution [J]. Earth and Planetary Science Letters, 1983, 66: 223-242.
14 WANG Y L, LIU Y G, SCHMITT R. Rare Earth Element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My [J]. Geochimica et Cosmochimica Acta, 1986, 50(7): 1 337-1 355.
15 FORSTER A, KUYPERS M, TURGEON S, et al. The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: new insights from a geochemical study of DSDP Site 530A [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267(3): 256-283.
16 ROBINSON S, MURPHY D, VANCE D, et al. Formation of "southern component water" in the Late Cretaceous: evidence from Nd-isotopes [J]. Geology, 2010, 38(10):871-874.
17 MURPHY D, THOMAS D. The evolution of Late Cretaceous deep‐ocean circulation in the Atlantic basins: neodymium isotope evidence from South Atlantic drill sites for tectonic controls [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5 323-5 340.
18 DU VIVIER A, SELBY D, SAGEMAN B B, et al. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2 [J]. Earth and Planetary Science Letters, 2014, 389: 23-33.
19 WEIN-BRUKNER A, GOCZAN F, IKRENYI K, et al. Study of organic matter on some Cenozoic samples from the DSDP Walwis Ridge Leg 75 Holes, with emphasis on its origin and petroleum potential[J]. Acta Mineralogica—Petrographica (Szeged), 1985, 27: 175-183.
20 HARTWIG A, DI PRIMIO R, ANKA Z, et al. Source rock characteristics and compositional kinetic models of Cretaceous organic rich black shales offshore southwestern Africa [J]. Organic Geochemistry, 2012, 51: 17-34.
21 RAU G, ARTHUR M, DEAN W. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry [J]. Earth and Planetary Science Letters, 1987, 82(3): 269-279.
22 KRAAL P, SLOMP C, FORSTER A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during Oceanic Anoxic Event 2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(1): 42-54.
23 FOLAMI S. Magnetic fabric of some IPOD sediment cores from the southwestern sector of Africa [J]. Journal of Sedimentary Research, 1988, 58(3): 512-518.
24 NORRIS R, KROON D, KLAUS A, et al. Proceedings of the Ocean Drilling Program, initial reports, 171B [C]// College Station, TX: Ocean Drilling Program, 1998.
25 NORRIS R, KROON D, KLAUS A, et al. Proceedings of the Ocean Drilling Program, scientific results, 171B [C]// College Station, TX: Ocean Drilling Program, 1998.
26 HOLBOURN A, KUHNT W, ERBACHER J. Benthic foraminifers from lower Albian black shales (Site 1049, ODP Leg 171): evidence for a non "uniformitarian" record [J]. The Journal of Foraminiferal Research, 2001, 31(1): 60-74.
27 FRIEDRICH O, NISHI H, PROSS J R, et al. Millennial-to centennial-scale interruptions of the Oceanic Anoxic Event 1b (Early Albian, mid-Cretaceous) inferred from benthic foraminiferal repopulation events [J]. Palaios, 2005, 20(1): 64-77.
28 HOLBOURN A, KUHNT W. No extinctions during Oceanic Anoxic Event 1b: the Aptian-Albian benthic foraminiferal record of ODP Leg 171[J]. Geological Society, London, Special Publications, 2001, 183(1): 73-92.
29 NORRIS R, HUBER B, SELF-TRAIL J. Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic [J]. Geology, 1999, 27(5): 419-422.
30 HUBER B T, MACLEOD K G, NORRIS R D, et al. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the Cretaceous-Tertiary boundary: evidence from the subtropical North Atlantic [J]. Special Papers—Geological Society of America, 2002. DOI:10.1130/0-8137-2356-6.277.
doi: 10.1130/0-8137-2356-6.277    
31 ALEGRET L, THOMAS E. Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(1/2): 59-83.
32 KELLER G, KHOZYEM H, ADATTE T, et al. Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus [J]. Geological Magazine, 2013, 150(5): 885-907.
33 HUBER B T, MACLEOD K G, TUR N A. Chronostratigraphic framework for upper Campanian-Maastrichtian sediments on the Blake Nose (subtropical North Atlantic) [J]. The Journal of Foraminiferal Research, 2008, 38 (2): 162-182.
34 GEORGESCU M D, HUBER B T. Early evolution of the Cretaceous serial planktic foraminifera (Late Albian-Cenomanian) [J]. The Journal of Foraminiferal Research, 2009, 39(4): 335-360.
35 J-P BELLIER, MOULLADE M. Lower Cretaceous planktonic foraminiferal biostratigraphy of the western North Atlantic (ODP Leg 171B), and taxonomic clarification of key index species [J]. Revue de Micropaléontologie, 2002, 45(1): 9-26.
36 HUBER B T, LECKIE R M. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections[J]. Journal of Foraminiferal Research, 2011, 41(1): 53-95.
37 BROWNING E L, WATKINS D K. Elevated primary productivity of calcareous nannoplankton associated with Ocean Anoxic Event 1b during the Aptian/Albian transition (Early Cretaceous)[J]. Paleoceanography, 2008, 23(2). DOI:10.1029/2007PA001413.
doi: 10.1029/2007PA001413    
38 BRACE B J, WATKINS D K. Evolution of the calcareous nannofossil genus Biscutum in the middle to Upper Cretaceous North American mid-latitudes [J]. Micropaleontology, 2014, 60(4): 445-463.
39 SHAMROCK J L, WATKINS D K. Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance [J]. Cretaceous Research, 2009, 30(5): 1 083-1 102.
40 GUERNET C, J-P BELLIER. Ostracodes Paléocènes et éocènes du Blake Nose (Leg ODP 171B) et évolution des environnements bathyaux au large de la Floride [J]. Revue de Micropaléontologie, 2000, 43(4): 249-279.
41 MAJORAN S. Palaeoenvironment of Maastrichtian ostracods from ODP Holes 1049B, 1050C and 1052E in the western North Atlantic[J]. Journal of Micropalaeontology, 1999, 18 (2): 125-136.
42 THUY B, GALE A S, KROH A, et al. Ancient origin of the modern deep-sea fauna [J]. PLoS ONE, 2012, 7(10): e46913.
43 ALEXANDRE J T, GILST R I VAN, RODRíGUEZ‐LóPEZ J P, et al. The sedimentary expression of Oceanic Anoxic Event 1b in the North Atlantic [J]. Sedimentology, 2011, 58(5): 1 217-1 246.
44 KLAUS A, NORRIS R D, KROON D, et al. Impact-induced mass wasting at the KT boundary: Blake Nose, western North Atlantic [J]. Geology, 2000, 28(4): 319-322.
45 HAN Zhiyan, HU Xiumian, JI Junfeng, et al. Origin of the Aptian-Albian high cyclic oceanic red beds in the ODP Hole 1049C, North Atlantic: mineralogical evidence[J]. Acta Geologica Sinica, 2008, 82(1): 124-132.
韩志艳, 胡修棉, 季峻峰, 等. 北大西洋ODP1049C孔Aptian-Albian 期高频旋回大洋红层的成因: 矿物学证据 [J]. 地质学报, 2008, 82(1): 124-132.
46 LI X, CAI Y. Constraining the colouration mechanisms of Cretaceous Oceanic Red Beds using diffuse reflectance spectroscopy [J]. Cretaceous Research, 2013, 46: 257-266.
47 LI X, HU X, CAI Y, et al. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic [J]. Sedimentary Geology, 2011, 235(1/2): 91-99.
48 HU X, SCOTT R W, CAI Y, et al. Cretaceous Oceanic Red Beds (CORBs): different time scales and models of origin [J]. Earth-Science Reviews, 2012, 115(4): 217-248.
49 MARTíNEZ-RUIZ F, ORTEGA-HUERTAS M, PALOMO I, et al. Cretaceous-Tertiary boundary at Blake Nose (Ocean drilling Program Leg 171B): a record of the Chicxulub impact ejecta[J]. Special Papers—Geological Society of America, 2002. DOI:10.1130/0-8137-2356-6.189.
doi: 10.1130/0-8137-2356-6.189    
50 MARTINEZ-RUIZ F, ORTEGA-HUERTAS M, PALOMO-DELGADO I, et al. KT boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits [J]. Geological Society, London, Special Publications, 2001, 183(1): 149-161.
51 MARTíNEZ-RUIZ F, ORTEGA-HUERTAS M, Climate PALOMO I., tectonics and meteoritic impact expressed by clay mineral sedimentation across the Cretaceous-Tertiary boundary at Blake Nose, Atlantic northwestern [J]. Clay Minerals, 2001, 36(1): 49-60.
52 KUYPERS M M, BLOKKER P, ERBACHER J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event [J]. Science, 2001, 293(5 527): 92-95.
53 FONTORBE G, FRINGS P J, CHRISTINA L, et al. A silicon depleted North Atlantic since the Palaeogene: evidence from sponge and radiolarian silicon isotopes[J]. Earth and Planetary Science Letters, 2016, 453: 67-77.
54 HUBER B T, MACLEOD K G, GR?CKE D R, et al. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic [J]. Paleoceanography, 2011, 26(4). DOI:10.1029/2011PA002178.
doi: 10.1029/2011PA002178    
55 QUILLéVéRé F, NORRIS R D, KROON D, et al. Transient ocean warming and shifts in carbon reservoirs during the early Danian [J]. Earth and Planetary Science Letters, 2008, 265 (3/4): 600-615.
56 ERBACHER J, HUBER B T, NORRIS R D, et al. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period [J]. Nature, 2001, 409(6 818): 325-327.
57 MACLEOD K G, HUBER B T, FULLAGAR P D. Evidence for a small (~0.000030) but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous-Tertiary boundary[J]. Geology, 2001, 29 (4): 303-306.
58 MACLEOD K G, FULLAGAR P D, HUBER B T. 87Sr/86Sr test of the degree of impact-induced slope failure in the Maastrichtian of the western North Atlantic [J]. Geology, 2003, 31(4): 311-314.
59 KUYPERS M M, BLOKKER P, HOPMANS E C, et al. Archaeal remains dominate marine organic matter from the early Albian Oceanic Anoxic Event 1b [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 185(1/2): 211-234.
60 BARKER C E, PAWLEWICZ M, COBABE E A. Deposition of sedimentary organic matter in black shale facies indicated by the geochemistry and petrography of high-resolution samples, Blake Nose, western North Atlantic[J]. Geological Society, London, Special Publications, 2001, 183(1): 49-72.
61 WAGNER T, HERRLE J O, DAMSTE? J S S, et al. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic [J]. Geology, 2008, 36(3): 203-206.
62 SCHOUTEN S, HOPMANS E C, FORSTER A, et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids [J]. Geology, 2003, 31(12): 1 069-1 072.
63 VILLASANTE‐MARCOS V, MARTíNEZ‐RUIZ F, OSETE M L, et al. Magnetic characterization of Cretaceous‐Tertiary boundary sediments[J]. Meteoritics & Planetary Science, 2007, 42(9): 1 505-1 527.
64 MOUNTAIN G, PROUST J, MCINROY D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 349 [C]. College Station, TX: Integrated Ocean Drilling Program, 2010.
65 ECORD Science Operator ESO. PANGAEA [DB/OL]. [2020-10-11]. .
URL    
66 MOUNTAIN G, PROUST J, MCINROY D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 349[C]// College Station, TX: Integrated Ocean Drilling Program, 2010.
67 PRADER S, KOTTHOFF U, MCCARTHY F M G, et al. Vegetation and climate development of the New Jersey hinterland during the late Middle Miocene (IODP Expedition 313 Site M0027)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 854-868.
68 FANG L, BJERRUM C J, HESSELBO S P, et al. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313) [J]. Geosphere, 2013, 9: 1 303-1 318.
69 KOTTHOFF U, GREENWOOD D, MCCARTHY F, et al. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027) [J]. Climate of the Past, 2014, 10: 1 523-1 539.
70 MCCARTHY F M, KATZ M E, KOTTHOFF U, et al. Sea-level control of New Jersey margin architecture: palynological evidence from Integrated Ocean Drilling Program Expedition 313 [J]. Geosphere, 2013, 9: 1 457-1 487.
71 KATZ M E, BROWNING J V, MILLER K G, et al. Paleobathymetry and sequence stratigraphic interpretations from benthic foraminifera: insights on New Jersey shelf architecture, IODP Expedition 313 [J]. Geosphere, 2013, 9: 1 488-1 513.
72 MILLER K G, SUGARMAN P J, BROWNING J V, et al. Pleistocene sequence stratigraphy of the shallow continental shelf, offshore New Jersey: constraints of Integrated Ocean Drilling Program Leg 313 core holes [J]. Geosphere, 2013, 9: 74-95.
73 BROWNING J V, MILLER K G, SUGARMAN P J, et al. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations [J]. Geosphere, 2013, 9: 1 434-1 456.
74 J-N PROUST, POUDEROUX H, ANDO H, et al. Facies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: results from IODP-ICDP Expedition 313 [J]. Geosphere, 2018, 14: 1 564-1 591.
75 KOMINZ M, MILLER K, BROWNING J, et al. Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional backstripping: a case for both eustasy and epeirogeny [J]. Geosphere, 2016, 12: 1 437-1 456.
76 NILSSON A, LEE Y S, SNOWBALL I, et al. Magnetostratigraphic importance of secondary chemical remanent magnetizations carried by greigite (Fe3S4) in Miocene sediments, New Jersey shelf (IODP Expedition 313) [J]. Geosphere, 2013, 9: 510-520.
77 PIERRE C, M-M BLANC-VALLERON, BOUDOUMA O, et al. Carbonate and silicate cementation of siliciclastic sediments of the New Jersey shelf (IODP Expedition 313): relation with organic matter diagenesis and submarine groundwater discharge [J]. Geo-Marine Letters, 2017, 37: 537-547.
78 GELDERN R VAN, HAYASHI T, B?TTCHER M E, et al. Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: methane formation and fluid origin [J]. Geosphere, 2013, 9: 96-112.
79 LOFI J, INWOOD J, J-N PROUST, et al. Fresh-water and salt-water distribution in passive margin sediments: insights from Integrated Ocean Drilling Program Expedition 313 on the New Jersey Margin [J]. Geosphere, 2013, 9: 1 009-1 024.
80 COSGROVE G I, HODGSON D M, MOUNTNEY N P, et al. High-resolution correlations of strata within a sand-rich clinothem using grain fabric data, offshore New Jersey, USA [J]. Geosphere, 2019, 15: 1 291-1 322.
81 HODGSON D M, BROWNING J V, MILLER K G, et al. Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey [J]. Geosphere, 2018, 14: 95-114.
82 MILLER K G, BROWNING J V, MOUNTAIN G S, et al. Sequence boundaries are impedance contrasts: core-seismic-log integration of Oligocene-Miocene sequences, New Jersey shallow shelf [J]. Geosphere, 2013, 9: 1 257-1 285.
83 INWOOD J, LOFI J, DAVIES S, et al. Statistical classification of log response as an indicator of facies variation during changes in sea level: Integrated Ocean Drilling Program Expedition 313 [J]. Geosphere, 2013, 9: 1 025-1 043.
84 MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf [J]. Geosphere, 2013, 9: 1 236-1 256.
85 KINOSHITA M, TOBIN H, ASHI J, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 314/315/316 [C]// College Station, TX: Integrated Ocean Drilling Program, 2009.
86 Institute for Marine-Earth Exploration and Engineering (MarE3). Japanese Database System (J-CORES) [DB/OL].[2021-01-15]. .
URL    
87 KOPF A, ARAKI E, TOCZKO S, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 332 [C]//College Station, TX: Integrated Ocean Drilling Program, 2011.
88 STRASSER M, DUGAN B, KANAGAWA K, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 338 [C]// College Station, TX: Integrated Ocean Drilling Program, 2014.
89 TOBIN H, HIROSE T, SAFFER D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition reports, 348 [C]// College Station, TX: Integrated Ocean Drilling Program, 2015.
90 TOBIN H, HIROSE T, IKARI M, et al. Proceedings of the International Ocean Discovery Program, expedition reports, 358 [C]// College Station, TX: International Ocean Discovery Program, 2020.
91 KINOSHITA M, TOBIN H, ASHI J, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 314/315/316 [C]// College Station, TX: Integrated Ocean Drilling Program, 2009.
92 STRASSER M, DUGAN B, KANAGAWA K, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 338 [C]// College Station, TX: Integrated Ocean Drilling Program, 2014.
93 TOBIN H, HIROSE T, SAFFER D, et al. Proceedings of the Integrated Ocean Drilling Program, expedition research results, 348 [C]// College Station, TX: Integrated Ocean Drilling Program, 2015.
94 MATSUZAKI K M, SUZUKI N, NISHI H, et al. Early to Middle Pleistocene paleoceanographic history of southern Japan based on radiolarian data from IODP Exp. 314/315 Sites C0001 and C0002 [J]. Marine Micropaleontology, 2015, 118: 17-33.
95 BUCHS D M, CUKUR D, MASAGO H, et al. Sediment flow routing during formation of forearc basins: constraints from integrated analysis of detrital pyroxenes and stratigraphy in the Kumano Basin, Japan [J]. Earth and Planetary Science Letters, 2015, 414: 164-175.
96 USMAN M O, MASAGO H, WINKLER W, et al. Mid-Quaternary decoupling of sediment routing in the Nankai Forearc revealed by provenance analysis of turbiditic sands [J]. International Journal of Earth Sciences, 2014, 103: 1 141-1 161.
97 HüPERS A, GRATHOFF G, WARR L, et al. Spatiotemporal characterization of smectite-to-illite diagenesis in the Nankai Trough accretionary prism revealed by samples from 3 km below seafloor[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 933-951.
98 SCHLEICHER A M, JURADO M J. Linking faults, fractures, and clay mineral occurrence with fluid transport in the accretionary prism of the Nankai Trough, Japan [J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 4 599-4 612.
99 TAKAHASHI M, AZUMA S, ITO H, et al. Frictional properties of the shallow Nankai Trough accretionary sediments dependent on the content of clay minerals [J]. Earth, Planets and Space, 2014, 66: 1-13.
100 UNDERWOOD M B, GUO J. Clay-mineral assemblages across the Nankai-Shikoku subduction system, offshore Japan: a synthesis of results from the NanTroSEIZE project [J]. Geosphere, 2018, 14: 2 009-2 043.
101 JAEGER D, STALDER R, MASAGO H, et al. OH defects in quartz as a provenance tool: application to fluvial and deep marine sediments from SW Japan [J]. Sedimentary Geology, 2019, 388: 66-80.
102 TOKI T, KINOSHITA M, MORITA S, et al. The vertical chloride ion profile at the IODP Site C0002, Kumano Basin, off coast of Japan [J]. Tectonophysics, 2017, 710: 88-96.
103 TOKI T, UEHARA Y, KINJO K, et al. Methane production and accumulation in the Nankai accretionary prism: results from IODP Expeditions 315 and 316[J]. Geochemical Journal, 2012, 46: 89-106.
104 FUKUCHI R, YAMAGUCHI A, YAMAMOTO Y, et al. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3 185-3 196.
105 HAMMERSCHMIDT S B, WIERSBERG T, HEUER V B, et al. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin [J]. Geochemical Transactions, 2014, 15: 1-15.
106 SHI M, WU H, ROBERTS A P, et al. Tectonic, climatic, and diagenetic control of magnetic properties of sediments from Kumano Basin, Nankai margin, southwestern Japan [J]. Marine Geology, 2017, 391: 1-12.
107 KANAMATSU T, PARéS J M, KITAMURA Y. Pliocene shortening direction in Nankai trough off Kumano, southwest Japan, sites IODP C0001 and C0002, expedition 315: anisotropy of magnetic susceptibility analysis for paleostress [J]. Geochemistry, Geophysics, Geosystems, 2012, 13. DOI:10.1029/2011GC003782.
doi: 10.1029/2011GC003782    
108 BYRNE T B, LIN W, TSUTSUMI A, et al. Anelastic strain recovery reveals extension across SW Japan subduction zone [J]. Geophysical Research Letters, 2009, 36. DOI:10.1029/2009GL040749.
doi: 10.1029/2009GL040749    
109 OOHASHI K, LIN W, WU H Y, et al. Stress state in the Kumano Basin and in slope sediment determined from anelastic strain recovery: results from IODP expedition 338 to the Nankai Trough[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3 608-3 616.
110 GUO J, UNDERWOOD M B, LIKOS W J, et al. Apparent overconsolidation of mudstones in the Kumano Basin of southwest Japan: implications for fluid pressure and fluid flow within a forearc setting[J]. Geochemistry, Geophysics, Geosystems, 2013, 14: 1 023-1 038.
111 KITAMURA M, HIROSE T. Strength determination of rocks by using indentation tests with a spherical indenter [J]. Journal of Structural Geology, 2017, 98: 1-11.
112 DAIGLE H, DUGAN B. Pore size controls on the base of the methane hydrate stability zone in the Kumano Basin, offshore Japan[J]. Geophysical Research Letters, 2014, 41: 8 021-8 028.
113 KITAJIMA H, SAFFER D, SONE H, et al. In situ stress and pore pressure in the deep interior of the Nankai accretionary prism, Integrated Ocean Drilling Program site C0002 [J]. Geophysical Research Letters, 2017, 44: 9 644-9 652.
114 MIYAKAWA A, SAITO S, YAMADA Y, et al. Gas hydrate saturation at site C0002, IODP expeditions 314 and 315, in the Kumano Basin, Nankai trough [J]. Island Arc, 2014, 23: 142-156.
115 LIN W, HIROSE T, TADAI O, et al. Thermal conductivity profile in the Nankai Accretionary Prism at IODP NanTroSEIZE site C0002: estimations from High-Pressure experiments using input site sediments [J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2020GC009108.
116 RAIMBOURG H, HAMANO Y, SAITO S, et al. Acoustic and mechanical properties of Nankai accretionary prism core samples [J]. Geochemistry, Geophysics, Geosystems, 2011, 12. .
URL    
117 TAKAHASHI M, AZUMA S, UEHARA S, et al. Contrasting hydrological and mechanical properties of clayey and silty muds cored from the shallow Nankai Trough accretionary prism [J]. Tectonophysics, 2013, 600: 63-74.
118 KITAMURA M, KITAJIMA H, SONE H, et al. Strength profile of the inner Nankai accretionary prism at IODP site C0002 [J]. Geophysical Research Letters, 2019, 46: 10 791-10 799.
119 LEE H, CHANG C, ONG S H, et al. Effect of anisotropic borehole wall failures when estimating in situ stresses: a case study in the Nankai accretionary wedge [J]. Marine and Petroleum Geology, 2013, 48: 411-422.
120 CHANG C, SONG I. Present‐day stress states underneath the Kumano basin to 2 km below seafloor based on borehole wall failures at IODP site C0002, Nankai accretionary wedge [J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 4 289-4 307.
121 SONG I, CHANG C. In situ stress conditions at IODP Site C0002 reflecting the tectonic evolution of the sedimentary system near the seaward edge of the Kumano basin, offshore from SW Japan [J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4 033-4 052.
122 WU H, CHAN C, KINOSHITA M, et al. Stress field observation and modeling from the NanTroSEIZE scientific drillings in the Nankai Trough system, SW Japan [J]. Tectonophysics, 2013, 600: 99-107.
123 WU H, CHAN C, SHIRAISHI K, et al. Observed stress state for the IODP Site C0002 and implication to the stress field of the Nankai Trough subduction zone [J]. Tectonophysics, 2019, 765: 1-10.
124 CHANG C, MCNEILL L C, MOORE J C, et al. In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures [J]. Geochemistry, Geophysics, Geosystems, 2010, 11: Q0AD04.
125 LEWIS J C, BYRNE T B, KANAGAWA K. Evidence for mechanical decoupling of the upper plate at the Nankai subduction zone: constraints from core-scale faults at NantroSEIZE sites C0001 and C0002 [J]. Geochemistry, Geophysics, Geosystems, 2013, 14: 620-633.
126 LI C, LIN J, KULHANEK D, et al. Proceedings of the International Ocean Discovery Program, expedition reports, 349 [C]//College Station, TX: International Ocean Discovery Program, 2014.
127 LI C, LIN J, KULHANEK D, et al. Proceedings of the International Ocean Discovery Program, expedition research results, 349 [C]// College Station, TX: International Ocean Discovery Program, 2014.
128 MIAO Y, WARNY S, CLIFT P D, et al. Evidence of continuous Asian summer monsoon weakening as a response to global cooling over the last 8 Ma [J]. Gondwana Research, 2017, 52: 48-58.
129 MIAO Y, WARNY S, CLIFT P D, et al. Climatic or tectonic control on organic matter deposition in the South China Sea? a lesson learned from a comprehensive Neogene palynological study of IODP site U1433 [J]. International Journal of Coal Geology, 2018, 190: 166-177.
130 MIAO Y, WARNY S, LIU C, et al. Neogene fungal record from IODP site U1433, South China Sea: implications for paleoenvironmental change and the onset of the Mekong River [J]. Marine Geology, 2017, 394: 69-81.
131 DUAN Z, LIU Q, GAI C, et al. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 82-97.
132 LIU C, CLIFT P D, MURRAY R W, et al. Geochemical evidence for initiation of the modern Mekong Delta in the southwestern South China Sea after 8 Ma [J]. Chemical Geology, 2017, 451: 38-54.
133 YANG F, HUANG X, XU Y, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea [J]. Journal of Petrology, 2019, 60: 1 135-1 162.
134 DING W, CHEN Y, SUN Z, et al. Chemical compositions and precipitation timing of basement calcium carbonate veins from the South China Sea [J]. Marine Geology, 2017, 392: 170-178.
135 ZHANG G, LUO Q, ZHAO J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea [J]. Earth and Planetary Science Letters, 2018, 489: 145-155.
136 ZHONG Y, ZHANG G, JIN Q, et al. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes [J]. Science Bulletin, 2020, 66: 740-748.
137 DUAN Z, LIU Q, QIN H, et al. Behavior of greigite-bearing marine sediments during AF and thermal demagnetization and its significance [J]. Geochemistry, Geophysics, Geosystems, 2020, 21:ee2019GC008635.
138 LI C, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15: 4 958-4 983.
139 SUN Z, DING W, ZHAO X, et al. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data [J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 9 980-9 998.
140 ZHANG Y, LIANG P, XIE X, et al. Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 125-132.
141 RENAUDIE J, LAZARUS D, DIVER P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy [J]. Palaeontologia Electronica, 2020, 23(1): a11.
142 PETERS S, KELLY D, FRAASS A. Oceanographic controls on the diversity and extinction of planktonic foraminifera [J]. Nature, 2013, 493: 398-401.
143 DAVIES T A, HAY W W, SOUTHAM J R, et al. Estimates of Cenozoic oceanic sedimentation rates [J]. Science, 1977, 197: 53-55.
144 WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years [J]. Science, 2020, 369: 1 383-1 387.
145 MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records [J]. Science Advances, 2020, 6: eaaz1346.
146 KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for Rare-Earth Elements [J]. Nature Geoscience, 2011, 4: 535-539.
[1] 王卷乐,石蕾,王玉洁,高孟绪,徐波,王超,王明明,王艳杰,周业智. 科学数据汇聚的模式分析及对我国的发展建议[J]. 地球科学进展, 2020, 35(8): 839-847.
[2] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[3] 杨福强,陈科贵,黄长兵,陈愿愿,李进,马小林. PSO-LIBSVM在钾盐矿层识别中的应用研究[J]. 地球科学进展, 2019, 34(7): 757-764.
[4] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[5] 王卷乐,王明明,石蕾,高孟绪,陈明奇,郑晓欢,王超,王玉洁. 科学数据管理态势及其对我国地球科学领域的启示[J]. 地球科学进展, 2019, 34(3): 306-315.
[6] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
[7] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[8] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[9] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[10] 陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
[11] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[12] 谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(8): 855-862.
[13] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[14] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
[15] 余星. 海底岩石地球化学研究中的“大数据”——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.
阅读次数
全文


摘要