1 |
BaoMengfei, BaoRonghua, YanZhaoying. Changes in global potash resources, production and marketing in 2017[J]. Phosphate and Compound Fertilizer, 2019,34(3):1-4.
|
|
鲍梦菲,鲍荣华,亓昭英.2017年全球钾盐资源及产销状况变化[J]. 磷肥与复肥, 2019,34(3):1-4.
|
2 |
ZhaoYuanyi, JiaoPengcheng, LiBotao, et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits, 2010, 29 (4): 649-656.
|
|
赵元艺, 焦鹏程,李波涛,等.中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质, 2010, 29(4):649-656.
|
3 |
MuYanzong, NieZhen, BuLingzhong, et al. Progress in study of potash resources of oil(gas) field brine in China[J].Advances in Earth Science, 2016, 31(2):147-160.
|
|
穆延宗, 乜贞,卜令忠,等. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2):147-160.
|
4 |
ChenKegui, LiChunmei, LiLi, et al. Geophysical logging criteria and discriminant model for the potassium-rich strata and their application to Sichuan Basin: A case study of Guang'an area of Central Sichuan[J]. Acta Geoscientica Sinica, 2013,34(5):623-630.
|
|
陈科贵,李春梅,李利,等.四川盆地含钾地层的地球物理测井标志、判别模型与应用——以川中广安地区为例[J].地球学报,2013,34(5):623-630.
|
5 |
ChenKegui, LiJin, HuangChangbing, et al. Application of BP neural network in potassium-rich brine[J]. Advances in Earth Science, 2018, 33(6):614-622.
|
|
陈科贵,李进,黄长兵,等.BP神经网络在富钾卤水中的应用研究[J].地球科学进展,2018,33(6):614-622.
|
6 |
ZhangZhiguo. Study on Artificial Neural Networks and Their Applications in Geoscience[D]. Jilin:Jilin University,2006.
|
|
张治国. 人工神经网络及其在地学中的应用研究[D].吉林:吉林大学,2006.
|
7 |
WangGuosheng. Research on Theory and Algorithm for Support Vector Machine Classifier[D]. Beijing:Beijing University of Posts and Telecommunications,2007.
|
|
王国胜. 支持向量机的理论与算法研究[D].北京:北京邮电大学,2007.
|
8 |
ChenKegui, WuLiulei, ChenYuanyuan, et al. Classification and recognition of polyhalite in Chuanzhong based on Support Vector Machine[J]. Advances in Earth Science, 2016, 31(10): 1 041-1 046.
|
|
陈科贵,吴刘磊,陈愿愿,等. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016,31(10):1 041-1 046.
|
9 |
CaoXu. Sketching-Alike Cross-Validation Contour Extraction[D]. Guangzhou:South China University of Technology,2018.
|
|
曹旭. 基于素描式交叉验证的轮廓提取算法[D]. 广州:华南理工大学,2018.
|
10 |
ChenKegui,LiLi,WangGang,et al.Analysis of logging response characteristics and potassium-forming conditions of Early and Middle Triassic Strata in Nanchong Basin[J]. Mineral Deposits,2014,33(5):1 069-1 080.
|
|
陈科贵, 李利, 王刚, 等. 四川盆地南充盐盆下、中三叠统测井响应特征及成钾条件分析[J]. 矿床地质, 2014, 33(5):1 069-1 080.
|
11 |
MeiQinghua, HeDengfa, WenZhu, et al. Geological structure and tectonic evolution of Leshan-Longnvsi paleo-uplift in Sichuan Basin,China[J]. Acta Petrolei Sinica, 2014, 35(1): 11-25.
|
|
梅庆华, 何登发, 文竹, 等. 四川盆地乐山—龙女寺古隆起地质结构及构造演化[J]. 石油学报, 2014, 35(1):11-25.
|
12 |
FuBin, WangXingzhi, ZhangFan. Impact of sedimentation on Xujiahe Formation of Guang’an Structure [J]. Natural Gas Technology, 2010,(2): 20-22,78.
|
|
付斌, 王兴志, 张帆. 沉积作用对广安构造须家河组储层的控制[J]. 天然气技术, 2010,(2):20-22,78.
|
13 |
VapnikV N. Statistical Learning Theory[M]. New York:John Wiley & Sons, Inc, 1998.
|
14 |
LuoJianrong. Study on Multi-Class Pattern Statistical Recognition Model and Application[D].Chongqing: Chongqing University,2009.
|
|
罗建容. 多类统计模式识别模型及应用研究[D].重庆:重庆大学,2009.
|
15 |
TianYouwen, TangXiaoming. Study on state evaluation for microprocessor protective device based on SVM [J]. Power System Protection and Control, 2009, 37(4): 66-69.
|
|
田有文, 唐晓明. 基于支持向量机的微机保护装置状态评估的研究[J]. 电力系统保护与控制, 2009, 37(4):66-69.
|
16 |
LuNing, WuBenling, LiuYing. Application of support vector machine model in load forecasting based on adaptive particle swarm optimization [J]. Power System Protection and Control, 2011, 39(15): 43-46.
|
|
陆宁, 武本令, 刘颖. 基于自适应粒子群优化的 SVM模型在负荷预测中的应用[J]. 电力系统保护与控制,2011, 39(15): 43-46.
|
17 |
SunBin, YaoHaitao. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model[J]. Power System Protection and Control, 2012, 40(5): 85-89.
|
|
孙斌, 姚海涛. 基于PSO优化 LSSVM 的短期风速预测[J]. 电力系统保护与控制, 2012, 40(5): 85-89.
|
18 |
ShiFeng, WangXiaochuan, YuLei, et al. 30 Case Analysis of MATLAB Neural Network [M]. Beijing: Beijing Aerospace University Press, 2010.
|
|
史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010.
|
19 |
FuQiang. Adaptive-grouping particle swarm algorithm[J]. Computer Engineering and Applications, 2011,47(15): 46-48,125.
|
|
符强.一种自适应分群的粒子群算法[J].计算机工程与应用,2011,47(15):46-48,125.
|
20 |
YangBin. Neural Network and Its Application in Oil Well Logging[M]. Beijing: Petroleum Industry Press, 2005:94-191.
|
|
杨斌. 神经网络及其在石油测井中的应用[M]. 北京:石油工业出版社, 2005:94-191.
|
21 |
ZhaoJunlong, LiGang, MaPingshe, et al. The application of network technology to petroleum logging interpretation[J]. Progress in Geophysics, 2010, 25(5): 1 744-1 751.
|
|
赵军龙, 李纲, 麻平社, 等. 神经网络在石油测井解释中的应用综述[J]. 地球物理学进展, 2010, 25(5):1 744-1 751.
|