地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 757 -764. doi: 10.11867/j.issn.1001-8166.2019.07.0757

研究论文 上一篇    下一篇

PSO-LIBSVM在钾盐矿层识别中的应用研究
杨福强 1( ),陈科贵 1( ),黄长兵 2,陈愿愿 3,李进 1,马小林 1   
  1. 1. 西南石油大学地球科学与技术学院,四川 成都 610500
    2. 中国石油化工集团中原油田,河南 濮阳 457000
    3. 川庆钻探工程有限公司地球物理勘探公司,四川 成都 610213
  • 收稿日期:2019-01-15 修回日期:2019-05-10 出版日期:2019-07-10
  • 通讯作者: 陈科贵 E-mail:1471756682@qq.com;chenkegui@21cn.com
  • 基金资助:
    国家自然科学基金项目“四川盆地油钾兼探的地球物理评价方法研究”(41372103)

Application of PSO-LIBSVM in Recognition of Potassium Salt Deposits

Fuqiang Yang 1( ),Kegui Chen 1( ),Changbing Huang 2,Yuanyuan Chen 3,Jin Li 1,Xiaolin Ma 1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
    2. Sinopec Group Zhongyuan Oilfield, Henan Puyang 457000, China
    3. Geophysical Exploration Company, Chuanqing Drilling Engineering Company Limited, Chengdu 610213, China
  • Received:2019-01-15 Revised:2019-05-10 Online:2019-07-10 Published:2019-07-29
  • Contact: Kegui Chen E-mail:1471756682@qq.com;chenkegui@21cn.com
  • About author:Yang Fuqiang (1994-), male, Chongqing City, Master student. Research areas include logging interpretation. E-mail: 1471756682@qq.com
  • Supported by:
    ect supported by the National Natural Science Foundation of China “The study on geophysical evaluation method of oil and potash in Sichuan Basin"(41372103)

钾盐的紧缺严重制约了中国农业的发展,加大钾盐的勘探开发力度有助于提高我国钾盐的自给自足能力。四川盆地钾盐资源丰富,是我国目前重要的钾盐勘探开发研究区域之一。杂卤石作为四川盆地最重要的固态钾盐矿物,常夹杂在硬石膏、岩盐和白云岩等岩层中。针对常规测井解释方法难以精确识别杂卤石的问题,因此,提出一种新的基于粒子群算法(PSO)优化的支持向量机(SVM)杂卤石识别方法开展四川盆地杂卤石的分类识别研究。以PSO和SVM理论为基础,结合测井解释方法,选择对杂卤石测井响应灵敏的有效数据作为输入样本,随机产生训练集和测试集,并采用PSO优选出径向基核函数参数,建立杂卤石分类预测模型。与录井结果对比,基于PSO的SVM模型识别准确率达到了97.5758%,在识别精度和速度上明显优于交叉验证方法优化的SVM模型。结果表明,该模型在四川盆地钾盐勘探中具有广阔的应用前景。

The shortage of potassium salt seriously restricts the development of China's agriculture. Increasing the exploration and development of potash will help improve the self-sufficiency of potassium in China. With rich potassium salt resources, Sichuan basin is one of the most important research areas for potash exploration and development in China. Polyhalite is an important solid potassium salt mineral in Sichuan basin, often intercalated in rock minerals such as anhydrite, rock salt and dolomite. Aiming at the problem that conventional log interpretation methods are difficult to accurately identify polyhalites, this paper proposed a new Support Vector Machine (SVM) recognition method based on Particle Swarm Optimization (PSO) to classify polyhalites in Sichuan basin. Based on particle swarm optimization and support vector machine theory, combined with logging interpretation theory, the effective data sensitive to polyhalite logging response were selected as input samples to generate training sets and test sets randomly. The Radial Basis Function (RBF) parameters were optimized by particle swarm optimization, and the classification and prediction model of polyhalite was established. Compared with mud logging results, the recognition accuracy of SVM model based on particle swarm optimization reached 97.5758%, which is obviously better than that of SVM model optimized by cross validation method in recognition accuracy and speed. The results show that the model has broad application prospects in potash exploration in Sichuan basin.

中图分类号: 

图1 四川盆地内成盐区划分(据参考文献[ 5 ]修改)
Fig.1 Division of salt-forming areas in Sichuan Basin (modified after reference [ 5 ])
图2 川中地区杂卤石等厚图
Fig.2 Isopch map of polyhalite in central Sichuan Basin
图3 线性可分情况下的最优超平面示意图
Fig.3 Sketch map of optimal hyperplane in the condition of linearly separable
图4 粒子群优化支持向量机参数算法流程图
Fig.4 Flowchart for optimizing support vector machine parameters based on particle swarm optimization
图5 粒子群优化的适应度曲线
Fig.5 Fitness curve of particle swarm optimization
图6 PSO-LIBSVM测试集预测结果精度图
Fig.6 Accuracy diagram of the prediction results of the PSO-LIBSVM test set
表1 不同方法的支持向量机分类结果比较
Table1 Comparison of classification results of support vector machines with different methods
表2 研究区 4口井杂卤石识别正确率
Table 2 Correct rate of polyhalite identification of four wells in the study area
图7 pso-libsvm模型识别女X1井杂卤石成果图
Fig.7 The recognition result of pso-libsvm model in the female X1 well
1 BaoMengfei, BaoRonghua, YanZhaoying. Changes in global potash resources, production and marketing in 2017[J]. Phosphate and Compound Fertilizer, 2019,34(3):1-4.
鲍梦菲,鲍荣华,亓昭英.2017年全球钾盐资源及产销状况变化[J]. 磷肥与复肥, 2019,34(3):1-4.
2 ZhaoYuanyi, JiaoPengcheng, LiBotao, et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits, 2010, 29 (4): 649-656.
赵元艺, 焦鹏程,李波涛,等.中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质, 2010, 29(4):649-656.
3 MuYanzong, NieZhen, BuLingzhong, et al. Progress in study of potash resources of oil(gas) field brine in China[J].Advances in Earth Science, 2016, 31(2):147-160.
穆延宗, 乜贞,卜令忠,等. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2):147-160.
4 ChenKegui, LiChunmei, LiLi, et al. Geophysical logging criteria and discriminant model for the potassium-rich strata and their application to Sichuan Basin: A case study of Guang'an area of Central Sichuan[J]. Acta Geoscientica Sinica, 2013,34(5):623-630.
陈科贵,李春梅,李利,等.四川盆地含钾地层的地球物理测井标志、判别模型与应用——以川中广安地区为例[J].地球学报,2013,34(5):623-630.
5 ChenKegui, LiJin, HuangChangbing, et al. Application of BP neural network in potassium-rich brine[J]. Advances in Earth Science, 2018, 33(6):614-622.
陈科贵,李进,黄长兵,等.BP神经网络在富钾卤水中的应用研究[J].地球科学进展,2018,33(6):614-622.
6 ZhangZhiguo. Study on Artificial Neural Networks and Their Applications in Geoscience[D]. Jilin:Jilin University,2006.
张治国. 人工神经网络及其在地学中的应用研究[D].吉林:吉林大学,2006.
7 WangGuosheng. Research on Theory and Algorithm for Support Vector Machine Classifier[D]. Beijing:Beijing University of Posts and Telecommunications,2007.
王国胜. 支持向量机的理论与算法研究[D].北京:北京邮电大学,2007.
8 ChenKegui, WuLiulei, ChenYuanyuan, et al. Classification and recognition of polyhalite in Chuanzhong based on Support Vector Machine[J]. Advances in Earth Science, 2016, 31(10): 1 041-1 046.
陈科贵,吴刘磊,陈愿愿,等. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016,31(10):1 041-1 046.
9 CaoXu. Sketching-Alike Cross-Validation Contour Extraction[D]. Guangzhou:South China University of Technology,2018.
曹旭. 基于素描式交叉验证的轮廓提取算法[D]. 广州:华南理工大学,2018.
10 ChenKegui,LiLi,WangGang,et al.Analysis of logging response characteristics and potassium-forming conditions of Early and Middle Triassic Strata in Nanchong Basin[J]. Mineral Deposits,2014,33(5):1 069-1 080.
陈科贵, 李利, 王刚, 等. 四川盆地南充盐盆下、中三叠统测井响应特征及成钾条件分析[J]. 矿床地质, 2014, 33(5):1 069-1 080.
11 MeiQinghua, HeDengfa, WenZhu, et al. Geological structure and tectonic evolution of Leshan-Longnvsi paleo-uplift in Sichuan Basin,China[J]. Acta Petrolei Sinica, 2014, 35(1): 11-25.
梅庆华, 何登发, 文竹, 等. 四川盆地乐山—龙女寺古隆起地质结构及构造演化[J]. 石油学报, 2014, 35(1):11-25.
12 FuBin, WangXingzhi, ZhangFan. Impact of sedimentation on Xujiahe Formation of Guang’an Structure [J]. Natural Gas Technology, 2010,(2): 20-22,78.
付斌, 王兴志, 张帆. 沉积作用对广安构造须家河组储层的控制[J]. 天然气技术, 2010,(2):20-22,78.
13 VapnikV N. Statistical Learning Theory[M]. New York:John Wiley & Sons, Inc, 1998.
14 LuoJianrong. Study on Multi-Class Pattern Statistical Recognition Model and Application[D].Chongqing: Chongqing University,2009.
罗建容. 多类统计模式识别模型及应用研究[D].重庆:重庆大学,2009.
15 TianYouwen, TangXiaoming. Study on state evaluation for microprocessor protective device based on SVM [J]. Power System Protection and Control, 2009, 37(4): 66-69.
田有文, 唐晓明. 基于支持向量机的微机保护装置状态评估的研究[J]. 电力系统保护与控制, 2009, 37(4):66-69.
16 LuNing, WuBenling, LiuYing. Application of support vector machine model in load forecasting based on adaptive particle swarm optimization [J]. Power System Protection and Control, 2011, 39(15): 43-46.
陆宁, 武本令, 刘颖. 基于自适应粒子群优化的 SVM模型在负荷预测中的应用[J]. 电力系统保护与控制,2011, 39(15): 43-46.
17 SunBin, YaoHaitao. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model[J]. Power System Protection and Control, 2012, 40(5): 85-89.
孙斌, 姚海涛. 基于PSO优化 LSSVM 的短期风速预测[J]. 电力系统保护与控制, 2012, 40(5): 85-89.
18 ShiFeng, WangXiaochuan, YuLei, et al. 30 Case Analysis of MATLAB Neural Network [M]. Beijing: Beijing Aerospace University Press, 2010.
史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010.
19 FuQiang. Adaptive-grouping particle swarm algorithm[J]. Computer Engineering and Applications, 2011,47(15): 46-48,125.
符强.一种自适应分群的粒子群算法[J].计算机工程与应用,2011,47(15):46-48,125.
20 YangBin. Neural Network and Its Application in Oil Well Logging[M]. Beijing: Petroleum Industry Press, 2005:94-191.
杨斌. 神经网络及其在石油测井中的应用[M]. 北京:石油工业出版社, 2005:94-191.
21 ZhaoJunlong, LiGang, MaPingshe, et al. The application of network technology to petroleum logging interpretation[J]. Progress in Geophysics, 2010, 25(5): 1 744-1 751.
赵军龙, 李纲, 麻平社, 等. 神经网络在石油测井解释中的应用综述[J]. 地球物理学进展, 2010, 25(5):1 744-1 751.
[1] 陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
[2] 陈科贵, 李利, 李春梅, 于静, 王林, 林新. 活动陆块背景下蒸发盆地后生阶段富钾区的演变[J]. 地球科学进展, 2014, 29(4): 515-522.
[3] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[4] 张成江,徐争启,倪师军,尹 观. 川西坳陷平落坝构造富钾卤水成因探讨[J]. 地球科学进展, 2012, 27(10): 1054-1060.
[5] 张睿,马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5): 555-562.
[6] 黄思静,Hairuo QING,胡作维,王春梅,郜晓勇,邹明亮,王庆东. 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
阅读次数
全文


摘要