地球科学进展 ›› 2006, Vol. 21 ›› Issue (10): 1008 -1013. doi: 10.11867/j.issn.1001-8166.2006.10.1008

综述与评述 上一篇    下一篇

海绵骨针特性及其仿生学研究
王晓红 1,2,王毅民 1   
  1. 1.国家地质实验测试中心,北京 100037; 2.北京大学环境学院,北京 100871
  • 收稿日期:2006-04-21 修回日期:2006-08-24 出版日期:2006-10-15
  • 通讯作者: 王毅民(1941-),男,河北南宫人,研究员,主要从事地质材料分析技术研究. E-mail:wym7852@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目“一种深海‘玻璃光纤’状物的基本特性及仿生学探索”(编号:50402023)资助.

An Introduction to the Study on Natural Characteristics of Sponge Spicules and Bionic Applications

Wang Xiaohong 1,2,Wang Yimin 1   

  1. 1.National Research Center of Geoanalysis, Beijing 100037,China;2.College of Environmental Sciences, Peking University, Beijing 100871,China
  • Received:2006-04-21 Revised:2006-08-24 Online:2006-10-15 Published:2006-10-15

海绵是生长在海洋或淡水环境中的一种最简单的多细胞生物,3个主要海绵纲中有2个纲的海绵其主要骨架与支撑是玻璃纤维状的硅质骨针。近年来,人们发现了硅质海绵骨针独特的微结构及良好的光纤特性,特别是指出了这些特性给人类带来制造光纤的新思路,并很快引起了科学家对其结构、特性、生长机制与调控的生物学、生矿物学和仿生学的广泛研究兴趣。评述了海绵骨针内部结构和光学特性的发现、海绵骨针研究的热点领域及研究意义,并简要介绍了海绵骨针的国内外研究概况及主要工作。

Sponges are one kind of the simplest multi-cellular organisms that live in both fresh-water and marine environment. Among the three classes of sponges, two of which produce silicified spicules as their body support. In recent years, peculiar micro-structure and high fiber-performance are found in sponge spicules. While the growth mechanisms of sponge spicules that live in ambient temperature and pressure was thought to be a new bionic way to produce optical-fiber. Therefore, these new discoveries have drawn increasing efforts worldwide to study the biology and biomineralization of sponge spicules and their bionic applications. Through studying the structure, the characteristic, the growth mechanism and mediation in sponge spicules, scientists are learning a new biotechnological route to produce electronic and optical nano-materials in an environmentally benign way. In this contribution, we review the major findings in the study of the micro-structure and optical performances in sponge spicules, and then discuss the progress and significance of studying sponge spicules.

中图分类号: 

[1] Gaino E, Sarà M. Siliceous spicules of Tethya seychellensis (Porifera) support the growth of a green alga: A possible light conducting system[J]. Marine Ecology Progress Series, 1994, 108: 147-151.

[2] Cattaneo-Vietti R, Bavestrello G, Cerrano C, et al. Optical fibres in an Antarctic Sponge[J]. Nature, 1996, 383: 397-398.

[3] Sundar V C, Yablon A D, Grazul J L, et al. Fibre-optical features of a glass sponge[J]. Nature, 2003, 424(21): 899-900.

[4] Luo Xia. “Natural optical fibre” from Deepsea is Better[N]. Science Times, 2003-09-18.[罗夏. 深海天然光纤更胜一筹[N].科学时报,2003-09-18.]

[5] Zhang Qinghua. 2008: to use the optical fiber produced by ourselves[N]. Science Times, 2003-09-19.[张庆华. 2008: 用上自己研制的光纤[N]. 科学时报, 2003-09-19.]

[6] Dai Yongding. Biomineralogy[M]. Beijing: Petroleum Industry Press, 1994.[戴永定. 生物矿物学[M]. 北京:石油工业出版社, 1994.]

[7] Levi C, Barton J L, Guillemet C, et al. A remarkably strong natural glassy rod-the anchoring spicule of the monraphis sponge[J]. Journal of Material Science Letter, 1989, 8: 337-229.

[8] Shimizu K, Cha J, Stucky G D, et al. Silicatein α: Cathepsin L-like protein in sponge biosilica[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 6 234-6 238.

[9] Lieberkuhn N. Beitrage zur Anatomie der Spongien[J]. Archiv fur Anatomie und Physiologie, 1859, 376-403.

[10] DeLage Y. Embryogenie des eponge[J]. Archives de Zoologie Experimentale, 1892, 10: 345-498.

[11] Aizenberg J, Sunder V C, Yablon A D, et al. Biological glass fibers: Correlation between optical and structural properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(10): 3 358-3 363.

[12] Shore R E. Axial filament of siliceous sponge spicules, its organic component and synthesis[J]. Biological Bulletin, 1972, 143: 689-698.

[13] Simpson T L, Langenbruch P F, Scalera-Liaci L, et al. Silica spicules and axial filaments of marine sponge stellettagrubii (Porifera Demospongiae)[J]. Zoomorphology, 1985, 105(6): 375-382.

[14] Sarikaya M, Fong H, Sunderland N, et al. Biomimetic model of a sponge-spicular optical fiber-mechanical properties and structure[J]. Journal of Materials Research, 2001, 16: 1 420-1 428.

[15] Aizenberg J, Weaver J C, Thanawala M S, et al. Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale[J]. Science, 2005, 309: 275-278.

[16] Weaver J C, Pietrasanta L I, Hedin N, et al. Nanostructural features of demosponge biosilica[J]. Journal of Structural Biology, 2003, 144: 271-281.

[17] Croce G, Frache A, Milanesio M, et al. Structural characterization of siliceous spicules from marine sponges[J]. Biophysical Journal, 2004, 86: 526-534.

[18] Müller W E G, Schrder H C, Wiens M, et al. Traditional and modern biomedical prospecting: Part II-the benefits[J]. Evidenced-based Complementary and Alternative Medicine, 2004, 1(2): 133-144.

[19] Müller W E G, Wendt K, Geppert C, et al. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi[J]. Biosensors and Bioelectronics, 2006, 21: 1 149-1 155.

[20] Crick R E. Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals[M]. New York: Plenum Press, 1989.

[21] Cha J N, Shimizu K, Zhou Y, et al. Silicate in filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 361-365.

[22] Garrone R. Collagene, spongine et squelette mineral chez l'eponge Haliclona rosea[J]. Journal of Microscopy, 1969, 8: 581-598.

[23] Uriz Maria-J. Mineral skeletogenesis in sponges[J]. Canadian Journal of Zoology, 2006, 84: 322-356.

[24] Müller Werner E G, Belikov Sergey I, Tremel Wolfgang, et al. Siliceous spicules in marine demosponges (example Suberites domuncula)[J]. Micron, 2006, 37: 107-120.

[25] Sumerel J L, Yang W, Kisailus D, et al. Biocatalytically templated synthesis of titanium dioxide[J]. Chemistry of Materials, 2003, 15: 4 804-4 809.

[26] Kisailus D, Truong Q, Amemiya Y, et al. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5 652-5 657.

[27] Du Jiawei. Life sciences and bionics[J]. Chinese Bulletin of Life Sciences, 2004,16(5): 317-323.[杜家纬.生命科学与仿生学[J]. 生命科学, 2004, 16(5): 317-323.]

[28] Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides[J]. Nature, 2000, 403: 289-292.

[29] Krasko A, Lorenz B, Batel R, et al. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin[J]. European Journal of Biochemistry, 2000, 267: 4 878-4 887.

[30] Krasko A, Schr der H C, Batel R, et al. Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula[J]. DNA and Cell Biology, 2002, 21(1): 67-80.

[31] Uriz M J, Turon X, Becerro M A. Silica deposition in Demosponges: Spiculogenesis in Crambe crambe[J]. Cell and Tissue Research, 2000, 301: 299-309.

[32] Li Jinhe. Sponges of marine fouling organisms in China waters[J]. Studia Marina Sinica, 1986,26: 73-116.[李锦和.中国海域污着生物中的海绵.[J] 海洋科学集刊, 1986, 26: 73-116.]

[33] Xue Song, Zhao Quanyu, Zhang Wei, et al. Research of natural products from Chinese sponge[J]. Natural Product Research and Development, 2003, 15(4): 359-368.[薛松,赵权宇,张卫,.中国海绵天然产物的研究[J].天然产物研究与开发,2003,15(4): 359-368.]

[34] Xue Song, Zhang Haitao, Wu Peichun, et al. Study on bioactivity of extracts from marine sponges in Chinese sea[J]. Journal of Experimental Marine Biology and Ecology, 2004, 298: 71-78.

[35] Zhang Wei, Xue Song, Zhao Quanyu, et al. Biopotentials of marine sponges from China oceans: Past and future[J].  Biomolecular Engineering, 2003, 20: 413-419.

[36] Qu Yi, Zhang Wei, Li Hua, et al. Cultivation of marine sponges[J]. Chinese Journal of Oceanology and Limnology, 2005, 23(2): 194-198.

[37] Guo Zhongman, Wang Lijun, Chen Xia, et al. Synthesis of the needle-like silica nanoparticles by biomineral method[J]. Chemical Journal of Chinese Universities, 2000, 21(6): 847-848.[郭中满, 王荔军, 陈霞,.生物矿化合成纳米针状SiO2[J].高等学校化学学报, 2000, 21(6): 847-848.]

[1] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[2] 王克林, Kate Moran. 加拿大海王星:科学、运行、管理[J]. 地球科学进展, 2013, 28(5): 521-528.
[3] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[4] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[5] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
[6] 牛向龙,李江海,冯军. 五台山新太古代块状硫化物矿床成矿作用研究——海底喷流沉积成因显微构造证据[J]. 地球科学进展, 2009, 24(9): 1009-1014.
[7] 李为,刘丽萍,曹龙,余龙江. 碳酸盐生物沉积作用的研究现状与展望[J]. 地球科学进展, 2009, 24(6): 597-605.
[8] 曹淑云,刘俊来. 岩石显微构造分析现代技术——EBSD技术及应用[J]. 地球科学进展, 2006, 21(10): 1091-1096.
[9] 李三忠,杨振升. 变斑晶晶内微构造应用研究进展[J]. 地球科学进展, 1998, 13(1): 51-57.
[10] 戴永定. 生物矿物学的发展与展望[J]. 地球科学进展, 1993, 8(4): 17-22.
[11] 刘瑞珣. 显微构造地质学[J]. 地球科学进展, 1992, 7(6): 69-.
阅读次数
全文


摘要