地球科学进展 ›› 2006, Vol. 21 ›› Issue (10): 999 -1007. doi: 10.11867/j.issn.1001-8166.2006.10.0999

综述与评述 上一篇    下一篇

热液羽状流研究进展
杨作升,范德江,李云海,王厚杰   
  1. 中国海洋大学海洋地球科学学院,山东 青岛 266003;中国海洋大学海底资源与探测技术重点实验室,山东 青岛 266003
  • 收稿日期:2006-04-24 修回日期:2006-08-30 出版日期:2006-10-15
  • 通讯作者: 杨作升 E-mail:zshyang@ouc.edu.cn
  • 基金资助:

    中国大洋矿产资源研究开发协会环境研究与评价项目“近底雾状层颗粒物组成及其运移示踪机制”(编号:DY105-02-07) 资助.

Advances in Hydrothermal Plumes Study

Yang Zuosheng,Fan Dejiang,Li Yunhai,Wang Houjie   

  1. College of Marine Geosciences, Ocean University of China, Qingdao 266003, China;Key Lab of Submarine Geosciences and Exploring Techniques, Ocean University of China, Qingdao 266003, China
  • Received:2006-04-24 Revised:2006-08-30 Online:2006-10-15 Published:2006-10-15

热液羽状流是全球洋中脊热泉场的重要组成部分,在深海热量和物质循环中有重要地位,是探测热泉场和热液喷口位置最直接有效的手段。介绍了热液羽状流的主要研究内容、探测技术方法、在不同海域洋脊的研究进展和21世纪的新成果,从地球系统科学和热泉场资源探测的角度归纳了主要科学问题和发展趋势。热液羽状流对全球海洋循环及大洋化学有重要影响,其位置探测在近期将经历一次“小型革命”,正在成为大洋研究前沿热点。

Hydrothermal plumes are one of the major components of the hydrothermal vent field in global mid-ocean ridge system, and profoundly have influence on the cycles of heat and mass flux in the deep ocean. Hydrothermal plumes survey is the most direct and effective way for locating the hydrothermal vents. In this paper, we briefly reviewed the advances in the subjects, survey techniques and analytical methods, and regional survey progresses in hydrothermal plumes study. The latest profound progress of the plume study since this millennium was reported briefly. The major scientific issues and the tendency of hydrothermal plumes study were summarized from the viewpoint of the earth system science concept and the hydrothermal resources exploration. Hydrothermal plumes play an important role in the global ocean cycling and marine chemistry. There should be a “minor revolution” in exploration to hydrothermal vent occurred in the coming future through the plume survey. The hydrothermal plumes study is becoming a frontier in the ocean science study. 

中图分类号: 

[1] Lupton J E, Delaney J R, Johnson H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes[J]. Nature, 1985, 316:621-623.

[2] Baker E T, Massoth G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean[J]. Earth and Planetary Science Letters, 1987, 85:59-73.

[3] Lupton J E, Craig H. A major helium-3 source at 15°S on the East Pacific Rise[J]. Science, 1981, 214:13-18.

[4] Speer K G, Rona P A. A model of an Atlantic and Pacific hydrothermal plume[J]. Journal of Geophysical Research, 1989, 94:6 213-6 220.

[5] Vent program, NOAA. Investigating the Distribution and Evolution of Hydrothermal Plumes[EB/OL]. http://www.pmel.noaa.gov/vents/plumestudies.htm,1995.

[6] Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences[C]Humphris S, Zierenberg R, Mullineaux L, et al, eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: Geophysical Monograph 91, American Geophysical Union, 1995:47-71.

[7] Lupton J E. Hydrothermal plumes: Near and far field[C]Humphris S, Zierenberg R, Mullineaux L, et al eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: Geophysical Monograph 91, American Geophysical Union, 1995:317-346.

[8] McDuff R E. Physical dynamics of deep-sea hydrothermal plumes[C]Humphris S, Zierenberg R, Mullineaux L, et al, eds.Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: Geophysical Monograph 91, American Geophysical Union, 1995:357-368.

[9] Walker S L, Baker E T. Particle-size distributions within hydrothermal plumes over the Juan de Fuca Ridge[J]. Marine Geology, 1998, 78:217-226.

[10] Baker E T, German C R. On the global distribution of hydrothermal vent fields[C]German C R, Lin J, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans, Geophysical Monograph Series 148. Washington DC: Geophysical Monograph 91, American Geophysical Union, 2004:245-266.

[11] Baker E T, Massoth G J, Feely R A. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge[J]. Nature, 1987, 329:149-151.

[12] Baker E T, Lavelle J W, Feely R A, et al. Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1989, 94:9 237-9 250.

[13] Nojiri Y, Ishibashi J, Kawai T, et al. Hydrothermal plumes along the North Fiji Basin spreading axis[J]. Nature, 1989, 342:667-670.

[14] Chadwick Jr W W, Embley R W, Fox C G, et al. Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987[J]. Nature, 1991, 350:416-418.

[15] Chadwick Jr W W, Embley R W, Fox C G. SeaBeam depth changes associated with recent lava flows, CoAxial segment, Juan de Fuca Ridge: Evidence for multiple eruptions between 1981-1993[J]. Oceanographic Literature Review, 1995, 8(42):655-656.

[16] Brian Handwerk. Hydrothermal “Megaplume” Found in Indian Ocean[R]. National Geographic News, http://news.nationalgeographic.com, 2005, 12.

[17] Rudnicki M D, Elderfield H. Theory applied to the Mid-Atlantic Ridge hydrothermal plumes: The finite difference approach[J]. Journal of Volcanology and Geothermal Research, 1992, 50:161-172.

[18] Charlou J L, Bougault H, Appriou P, et al. Different TDM/CH4 hydrothermal plume signatures: TAG site at 26°N and serpentinized ultrabasic daipir at 15°05'N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta,1991, 55:3 209-3 222.

[19] Welhan J A, Craig H. Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise[C]Rona P A, Boström K, Laubier L, eds. Hydrothermal Processes at Seafloor Spreading Centers. Plenum Press, 1983:391-410.

[20] Von Damm K L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys[J]. Annual Review of Earth and Planetary Sciences, 1990, 18:173-204.

[21] Lavelle J W. Buoyancy-driven plumes in rotating stratified cross flows: Plume dependence on rotation, turbulent mixing and cross-flow strength[J]. Journal of Geophysical Research, 1997, 102(C2):3 405-3 420.

[22] Lavelle J W, Baker E T. A numerical study of local convection in the benthic ocean induced by episodic hydrothermal discharges[J]. Journal of Geophysical Research, 1994, 99(C8):16 065-16 080.

[23] Lavelle J W, Cannon G A. On sub-inertial oscillations trapped by the Juan de Fuca Ridge, Northeast Pacific[J]. Journal of Geophysical Research, 2001, 106(C12):31 099-31 116.

[24] Feely R A, Lewison M, Massoth G J, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1987, 92(B11):11 347-11 363.

[25] Lavelle J W, Baker E T, Massoth G J. On the calculation of total heat, salt and tracer fluxes from ocean hydrothermal events[J]. Deep-Sea Research (II), 1998,45 (12):2 619-2 636.

[26] Bougault H, Charlou J L, Fouquet Y, et al. Activité hydrothermale et structure axiale des dorsales Est-Pacifique et médio-Atlantique[J]. Oceanologica Acta, 1990,(special 10):199-207.

[27] Coale K H, Chin C S, Massoth G J, et al. In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes[J]. Nature, 1991, 352:325-328.

[28] Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1994, 99: 4 969-4 984.

[29] Massoth G J, Milburn H B, Johnson K S, et al. A SUAVE (Submersible System Used to Assess Vented Emissions) approach to plume sensing: The Buoyant Plume Experiment at Cleft Segment, Juan de Fuca Ridge and plume exploration along the EPR 9-11°N[J]. EOS Transactions AGU, 1991, 72(44 Suppl.):234.

[30] Edmond J M, Von Damm K L, McDuff R E, et al. Chemistry of hot springs on the East Pacific rise and their effluent dispersal[J]. Nature, 1982, 297:187-191.

[31] Klinkhammer G. Fiber optic spectrometers for in situ measurement in the oceans: The ZAPS probe[J]. Marine Chemistry,1994, 47:13-20.

[32] Corliss J B, Dymond, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift[J]. Science, 1979, 203:1 073-1 083.

[33] Knauss J A. On some aspects of the deep circulation of the Pacific[J]. Journal of Geophysical Research, 1962, 67:3 943-3 954.

[34] Warren B A. Transpacific hydrographic sections at Lats.43°S and 28°S: the SCORPIO Expedition—II. Deep water[J]. Deep-Sea Research, 1973, 20:9-38.

[35] Lonsdale P. Abyssal circulation of the southeastern Pacific and some geological implications[J]. Journal of Geophysical Research,1976, 81:1 163-1 176.

[36] Clarke W B, Beg M A, Craig H. Excess helium-3 in the sea: Evidence for terrestrial primordial helium[J]. Earth and Planetary Science Letters, 1969, 6:213-220.

[37] Craig H, Clarke W B, Beg M A. Excess 3He in deep water on the East Pacific Rise[J]. Earth and Planetary Science Letters, 1975, 26:125-132.

[38] Klinkhammer G, Bender M, Weiss R F. Hydrothermal manganese in the Galapagos Rift[J]. Nature, 1977, 269:319-320.

[39] Bolger G W, Betzer P R, Gordeev V V. Hydrothermally derived manganese suspended over the Galapagos spreading center[J]. Deep-Sea Research, 1978, 25:721-733.

[40] Murton B J, Klinkhammer G, Becker K, et al. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°N-30°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1994, 125:119-128.

[41] McConachy T F, Scott S D. Real-time mapping of hydrothermal plumes over southern Explorer Ridge, NE Pacific Ocean[J]. Marine Mining, 1987, 6:181-204.

[42] Jones C J, Johnson H P, Delaney J R. Distribution of hydrothermal manganese over the Juan de Fuca Ridge[J]. Geophysical Research Letters, 1981, 8:873-876.

[43] Lupton J E. Water column hydrothermal plumes on the Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1990, 95:12 829-12 842.

[44] Baker E T, Massoth G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean[J]. Earth and Planetary Science Letters, 1987, 85:59-73.

[45] Thomson R E, Delaney J R, McDuff R E, et al. Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988[J]. Earth and Planetary Science Letters, 1992, 111:141-154.

[46] Baker E T, Massoth G J. Hydrothermal plume measurements: A regional perspective[J]. Science, 1986, 234:980-982.

[47] Gendron J F, Cowen J P, Feely R A, et al. Age estimate for the 1987 megaplume on the southern Juan de Fuca Ridge using excess radon and manganese partitioning[J]. Deep-Sea Research (I), 1993, 40:1 559-1 567.

[48] Embley R W, Chadwick Jr W W, Jonasson I R, et al. Initial results of the rapid response to the 1993 CoAxial event: Relationships between hydrothermal and volcanic processes[J]. Geophysical Research Letters, 1995, 8(42):655.

[49] Baker E T, Massoth G J, Feely R A, et al. Hydrothermal event plumes from the CoAxial seafloor eruption site, Juan de Fuca Ridge[J]. Geophysical Research Letters, 1995, 8(42):653.

[50] DeMets C, Gordon R G, Argus D F, et al. Current plate motions[J]. Geophysical Journal International, 1990, 101:425-478.

[51] Lupton J E. Helium-3 in the Guaymas Basin: Evidence for injection of mantle volatiles in the Gulf of California[J]. Journal of Geophysical Research, 1979, 84:7 446-7 452.

[52] Crane K, Aikman III F A, Foucher J P. The distribution of geothermal fields along the East Pacific Rise from 13°10'N to 8°20'N: Implications for deep-seated origins[J]. Marine Geophysical Researches, 1988, 9:211-236.

[53] Feely R A, Gendron J F, Baker E T, et al. Hydrothermal plumes along the East Pacific Rise, 8°40' to 11°50'N: Particle distribution and composition[J]. Earth and Planetary Science Letters, 1994, 128:19-36.

[54] Haymon R M, Fornari D J, Von Damm K L, et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise at 9°45'/9°52'N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991[J]. Earth and Planetary Science Letters, 1993, 119:85-101.

[55] Baker E T, Urabe T. Distribution of hydrothermal plumes along the superfast-spreading East Pacific Rise, 13°50'/18°40'S[J]. EOS Transactions AGU, 1994, 75(44 Suppl.):321.

[56] Gamo T, Sakai H, J Ishibashi, et al. Hydrothermal plumes in the eastern Manus Basin, Bismark Sea: CH4, Mn, Al, and pH anomalies[J]. Deep-Sea Research (I),1993, 40:2 335-2 349.

[57] Craig H, Clarke W B, Beg M A. Excess 3He in deep water on the East Pacific Rise[J]. Earth and Planetary Science Letters,1975, 26:125-132.

[58] Nojiri Y, Ishibashi J, Kawai T, et al. Hydrothermal plumes along the North Fiji basin spreading axis[J]. Nature, 1989, 342:667-670.

[59] Sedwick P N, Gamo T, McMurtry G M. Manganese and methane anomalies in the North Fiji Basin[J]. Deep-Sea Research (I), 1990, 37:891-896.

[60] Ishibashi J I, Gamo T, Sakai H, et al. Geochemical evidence for hydrothermal activity in the Okinawa Trough[J]. Geochemical Journal, 1988, 22:107-114.

[61] Horibe Y, Kim K R, Craig H. Hydrothermal methane plumes in the Mariana back-arc spreading center[J]. Nature, 1986, 324:131-133.

[62] Klinkhammer G, Rona P, Greaves M, et al. Hydrothermal manganese plumes in the mid-Atlantic Ridge rift valley[J]. Nature, 1985, 314:727-731.

[63] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulfides and vent biota at the mid-Atlantic Ridge[J]. Nature, 1986, 321:33-37.

[64] Charlou J L, Donval J P. Hydrothermal methane venting between 12°/26°N along the Mid-Atlantic Ridge[J]. Journal of Geophysical Research, 1993, 98:9 625-9 642.

[65] Langmuir C H, Fornari D, Colodner D, et al. Geological setting and characteristics of the Lucky Strike vent field at 37°17'N on the Mid-Atlantic Ridge[J]. EOS Transactions AGU, 1993, 74(43 Suppl.):99.

[66] German C R, Briem J, Chin C, et al. Hydrothermal activity on the Reykjanes Ridge: The Steinahóll Vent-field at 63°06'N[J]. Earth and Planetary Science Letters, 1994, 121:647-654.

[67] Bostrom K, Peterson M A, Joensuu O, et al. Aluminum-poor ferromangoan sediments on active ocean ridges[J]. Journal of Geophysical Research, 1969, 74:3 261-3 270.

[68] Herzig P M, Plüger W L. Exploration for hydrothermal mineralization near the Rodriguez Triple Junction, Indian Ocean[J]. Canadian Mineralogist, 1988, 26:721-736.

[69] Plüger W L, Herzig P M, Becker K P, et al. Discovery of hydrothermal fields at the Central Indian Ridge[J]. Marine Mining, 1990, 9:73-86.

[70] Gamo T, Nakayama E, Obata H, et al. Chemical evidence for the occurrence of hydrothermal activity on the Central Indian Ridge near the Rodriguez Triple Junction[J]. EOS Transactions AGU, 1994, 75(44 Suppl.):314.

[71] Jamous D, Mémery L, Andríe C, et al. The distribution of helium 3 in the deep western and southern Indian Ocean[J]. Journal of Geophysical Research, 1992, 97:2 243-2 250.

[72] German C R, Livermore R A, Baker E T, et al. Hydrothermal plumes above the East Scotia Ridge: An isolate high-latitude back-arc spreading centre[J]. Earth and Planetary Science Letters, 2000, 184:241-250.

[73] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412:145-149.

[74] Edmonds H N, Michael P J, Baker E T, et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J]. Nature, 2003, 421:252-256.

[75] Jian Lin. New Frontiers and Opportunities for Deep Sea Science and Technology[R]. Beijing:Western Pacific Geophysics Meeting, 2006.

[1] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[2] 孙治雷,李军,孙致学,黄威,崔汝勇,李季伟. 热液喷口系统中氧化物沉淀体的形成及微生物的作用[J]. 地球科学进展, 2010, 25(12): 1325-1336.
[3] 王丽玲,林景星,胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
阅读次数
全文


摘要