[1] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J].Marine Geology, 1988,81:227-239.[2] Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and east Pacific rise axial and off-axial regions[J].Economic Geology,1993,88:2 099-2 121. [3] Boyd T D, Scott S D. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: The example of Franklin seamount,western Woodlark basin, Papua New Guinea[J/OL].Geochemical Transactions, 2001,2:45,doi:10.1186/1467-4866-2-45. [4] Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast Pacific ocean[J].Geomicrobiology Journal,2003,20:199-214. [5] Kennedy C B, Scott S D, Ferris F G.Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, northeast Pacific ocean[J].FEMS Microbiology Ecology,2003,43:247-254. [6] Emerson D, Rentz J A, Lilburn T G, et al.A novel lineage of proteobacteria involved in formation of marine fe-oxidizing microbial mat communities[J/OL].PloS One, 2007,2(7): e667. doi: 10.1371/journal.pone.0000667. [7] Hrischeva E, Scott S D.Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge[J].Geochimica et Cosmochimica Acta,2007,71:3 476-3 497. [8] Kato S, Kobayashi C, Kakegawa T,et al.Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the southern Mariana trough[J].Environmental Microbiology,2009,11:2 094-2 111. [9] Langley S, Igric P, Takahashi Y.Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific ocean[J].Geobiology,2009,7:35-49. [10] Duhig N C, Davidson G J, Stolz J.Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits[J].Australia Geology,1992,20:511-514. [11] Davidson G J, Stolz A J, Eggins S M.Geochemical anatomy of silica iron exhalites: Evidence for hydrothermal oxyanion cycling in response to vent fluid redox and thermal evolution (Mt. Windsor Subprovince, Australia)[J].Economic Geology,2001,96:1 201-1226. [12] Grenne T, Slack J F. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits[J]. Geology,2003, 31:319-322. [13] Little C T S, Glynn S E J, Mills R A. Four-hundred and ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents[J].Geomicrobiology Journal,2004,21:415-429. [14] Kato S, Yanagawa K, Sunamura M,et al.Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the southern Mariana trough[J].Environmental Microbiology,2009,11:3 210-3 222. [15] Schädler S, Burkhardt C, Hegler F,et al.Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxdizing bacteria[J].Geomicrobiology Journal,2009, 26:93-103. [16] Hofmann B A, Farmer J D, von Blanckenburg F, et al.Subsurface filamentous fabrics: An evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology[J].Astrobiology,2008,8: 87-117. [17] Knoll A H, Simonson B. Early Proterozoic microfossils and penecontemporaneous quartz cementation in the sokomon iron formation, Canada[J].Science,1981, 211:478-480. [18] Strother P K, Tobin K.Observations on the genus Huroniospora Barghoorn: Implications for paleoecology of the Gunflint microbiota[J].Precambrian Research,1987,36:323-333. [19] Knoll A H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth[M].New Jersey: Princeton University Press, 2003:304. [20] Goldich S S. Ages of Precambrian banded iron-formations[J].Economic Geology,1973,68:1 126-1 134. [21] Isley A E. Hydrothermal plumes and the delivery of iron to banded iron formation[J].Journal of Geology,1995,103:169-185. [22] Konhauser K O, Hamade T, Raiswell R, et al.Could bacteria have formed the Precambrian banded iron formations?[J]. Geology,2002,30:1 079-1 082. [23] German C R,von Damm K L. Hydothermal processes[C]//Heinrich D, et al, eds. Treatise on Geochemistry. Elsevier, 2003: 181-222. [24] Cady S L, Farmer J D, Grotzinger J P,et al. Morphological biosignatures and the search for life on Mars[J].Astrobiology,2003, 3: 351-368. [25] Straub M, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH[J].FEMS Microbiology Ecology,2001, 34:181-186. [26] Edwards K J.Formation and degradation of seafloor hydrothermal sulfide deposits[C]//Amend J P, et al,eds. Biogeochemistry of Sulfur, 83-96, Geological Society of America,2004. [27] Kappler A, Newman D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria[J].Geochimica et Cosmochimica Acta,2004,68:1 217-1 226. [28] Roden E E, Sobolev D, Glazer B,et al. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface[J].Geomicrobiology Journal,2004, 21:379-391. [29] Holland H D. The oxygenation of the atmosphere and oceans[J].Transactions of the Royal Society B,2006,361:903-915. [30] Landing W M, Bruland K W. The contrasting biogeochemistry of iron and manganese in Pacific ocean[J].Geochimica et Cosmochimca Acta,1987,51:29-43. [31] Von Damm K L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids[C]//Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: AGU,1995. [32] Statham P J, Yeats P A, Landing W M. Manganese in the eastern Atlantic ocean: Processes influencing deep and surface water distributions[J].Marine Chemistry,1998, 61: 55-66. [33] Millero F J, Sotolongo S, Izaguirre M. The oxidation kinetics of Fe(II) in seawater[J].Geochimica et Cosmochimica Acta,1987, 51:793-801. [34] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M].Wiley-Interscience, New York:NY10158(USA),1996:1 022. [35] Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J].Applied and Environmental Microbiology,2002,68:3 085-3 093. [36] Fortin D, Langley S.Formation and occurrence of biogenic iron-rich minerals[J].Earth-Science Reviews,2005,72:1-19. [37] Hallberg R, Ferris F G. Biomineralization by Gallionella[J].Geomicrobiology Journal,2004,21:325-330. [38] Edwards K J, Rogers D R, Wirsen C O,et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-proteobacteria from the deep sea[J].Applied and Environmental Microbiology,2003, 69:2 906-2 913.[39] Neubauer S C, Emerson D, Megonigal J P. Life at the Energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J].Apllied and Environmental Microbiology,2002, 68:3 988-3 995.[40] James R E, Ferris F G. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring[J].Chemical Geology,2004,212:301-311. [41] Ferris F G. Biogeochemical properties of bacteriogenic iron oxides[J].Geomicrobiology Journal,2005, 22:79-85. [42] Druschel G K,Emerson D, Sutka R, et al. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms[J].Geochimica et Cosmochimica Acta,2008, 72,:3 358-3 370. [43] Emerson D, Revsbech N P. Investigation of an iron-oxidizing microbial mat community located near rhus, Denmark: Field studies[J].Applied and Environmental Microbiology,1994,60:4 022-4 031. [44] Emerson D, Revsbech N P. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Laboratory studies[J].Applied and Environmental Microbiology,1994,60:4 032-4 038. [45] Kasama T, Murakami T. The effect of microorganisms on Fe precipitation rates at neutral pH[J].Chemical Geology, 2001,180:117-128. [46] Cloud P E. Paleoecological significance of the banded iron-formation[J].Economic Geology,1973,68:1 135-1 143. [47] Holm N G. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations[J].Chemical Geology,1989, 77: 41-45. [48] Fortin D, Beveridge T J. Microbial sulfate reduction within mine tailings: Formation of diagenetic Fe-sulfides[J]. Geomicrobiology Journal,1997,14:1-21. [49] Daughney C J, Fortin D. Mineral adsorption and absorption by biological cells[C]//Hubbard A, ed. Encyclopedia of Surface and Colloid Science. Marcel Dekker, Inc. New York, 2002:3 430-3 446. [50] Glasauer S, Langley S,Beveridge T J. Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed de novo[J].Applied and Environmental Microbiology,2001,67:5 544-5 550. [51] Yee N, Fein J B. Cd adsorption onto bacterial surfaces: A universal adsorption edge?[J].Geochimica et Cosmochimica Acta,2001, 65:2 037-2 042. [52] Châtellier X, West M, Rose J,et al.Oxidation of ferrous ions in the presence of various bacterial strains and inorganic ligands[J].Geomicrobiology Journal,2004, 21:99-112. [53] Warren L A, Ferris F G. Continuum between sorption and precipitation of Fe(III) on microbial surfaces[J].Environmental Science and Technology,1998,32:2 331-2 337. [54] Châtellier X, Fortin D, West M,et al. Effect of the presence of bacterial surfaces during the synthesis of Fe-oxides by oxidation of ferrous ions[J].European Journal of Mineralogy,2001, 13:705-714. [55] Hallbeck L, Pedersen K. Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalkforming and non-stalk-forming strain and biofilm studies in situ[J].Microbial Ecology,1995,30:257-268. [56] Chan C S, Stasio G D, Welch S A,et al.Microbial polysaccharides template assembly of nanocrystal fibers[J].Science,2004, 303:1 656-1 658. [57] Takai K, Nunoura T, Ishibashi J,et al.Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau basin[J/OL].Journal of Geophysical Research,2008,113: G02031, doi:10.1029/2007JG000636. [58] Herzig P M, Becker K P, Stoffers P,et al.Hydrothermal silica chimney fields in the Galapagos spreading center at 86°W[J].Earth and Planetary Scinece Letters,1988, 89:261-272. [59] Juniper S K, Fouquet Y.Filamentous iron-silica deposits from modern and ancient hydrothermal site[J].Canadian Mineralogist,1988, 26:859-869. [60] Sun Z, Zhou H, Yang Q,et al.Formations of Fe-Si-Mn oxides and phyllosilicate in hydrothermal vent systems: Example of Valu Fa Ridge in Lau back-arc basin[J].Marine Geology, Submitted. [61] Eggleton R A, Fitzpatrick R W. New data and a revised structural model for ferrihydrite[J].Clays and Clay Minerals, 1988,36:111-124. [62] Zhao J, Huggins F E, Feng Z,et al. Ferrihydrite: Surface structure and its effects on phase transformation[J].Clays and Clay Minerals,1994,42:737-746. [63] Cornell R M,Schwertmann U. The Iron Oxides: Properties, Reactions, Occurrences and Uses[M]. Wiley-VCH,2003:367-383. [64] Vempati P K, Loeppert R H,Sittertz-Bhatkar H,et al. Infrared vibrations of hematite formed from aqueous- and dry-thermal incubation of Si-contanining ferrihydrite[J].Clays and Clay Minerals,1990,38:294-298. [65] Slack J F, Grenne T, Bekker A. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawate[J].Geosphere,2009, 5:302-314. [66] Glasby G P, Emelyanov E M, Zhamoida V A, et al. Environments of formation of ferromanganese concretions in the Baltic sea: A critical review[J]. Geological Society, 1997,119 (Special Publications):213-237. [67] Kump L R, Seyfried Jr W E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J].Earth and Planetary Science Letters,2005,235:654-662. [68] Lascelles D F. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations[J].Ore Geology Reviews,2007,32:381-411. [69] Holland H D. The oceans: A possible source of iron in iron-formations[J].Economic Geology,1973,68:1 169-1 172. [70] Jacobsen S B, Pimentel-Klose M R. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and Fe in Archean oceans[J].Earth and Planetary Science Letters,1988,87:29-44. [71] Hamade T, Konhauser K O, Raiswell R,et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J].Geology,2003,31:35-38. [72] Walker J C G. Suboxic diagenesis in banded iron formations[J].Nature,1984,309:340-342. [73] Cairns-Smith A G.Precambrian solution photochemistry-inverse segregation and banded iron formations[J].Nature,1978, 276:807-808. [74] Konhauser K O, Amskold L, Lalonde S V, et al. Decoupling photooxidation from shallow-water BIF deposition[J].Earth and Planetary Science Letters,2007, 258:87-100. [75] Weber K A, Achenbach L A, Coates J D.Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J].Nature Reviews Microbiology,2006,4:752-764. [76] Posth N R, Konhauser K O, Kappler A. Microbiological processes in BIF deposition[J].Nature Geoscience,2008,1:703-708. [77] Nealson K H, Myers C R. Iron reduction by bacteria: A potential role in the genesis of banded iron formations[J].American Journal of Science,1990,290-A:35-45. [78] Pierson B K, Parenteau M N, Griffin B M. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring[J].Applied and Environmental Microbiology,1999,65:5 474-5 483. [79] Tyler S A, Barghoorn E S. Occurrence of structurally preserved plants in pre-cambrian rocks of the Canadian shield[J]. Science,1954,119:606-608. [80] Barghoorn E S, Tyler S A. Microorganisms from the gunflint chert[J].Science,1965,147:563-577. [81] Cloud P E. Significance of the gunlint (Precambrian) microflora[J].Science, 1965, 148:27-35. [82] Cloud P E, Licari G R. Microbiotas of banded iron formation[J].Proceedings of the National Academy of Sciences, USA, 1968,61:779-786. [83] Planavsky N, Rouxel O, Bekker A,et al. Iron-oxidizing microbial ecosystems thrived in Late Paleoproterozoic redox-stratified oceans[J].Earth and Planetary Science Letters,2009,286:230-242. [84] Ghiorse W C. Biology of iron-depositing and manganese-depositing bacteria[J].Annual Review of Microbiology,1984,38: 515-550. [85] Holm N G.Possible biological origin of banded iron-formations from hydrothermal solutions[J].Origins of Life and Evolution of Biospheres,1987,17:229-250. [86] Trendall A. The significance of banded iron formation (BIF) in the Precambrian stratigraphic record[J].Geoscientist,2000,10:4-7. [87] Fischer W W, Knoll A H. An iron for deepwater silica in Late Archean and early Plaeoproterozoic iron formation[J].Geological Society of America Bulletin,2009,121:222-235. |