地球科学进展 ›› 2006, Vol. 21 ›› Issue (10): 1091 -1096. doi: 10.11867/j.issn.1001-8166.2006.10.1091

新学科·新技术·新发现 上一篇    下一篇

岩石显微构造分析现代技术——EBSD技术及应用
曹淑云,刘俊来   
  1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京 100083
  • 收稿日期:2006-04-12 修回日期:2006-09-12 出版日期:2006-10-15
  • 通讯作者: 曹淑云 E-mail:jliu@cugb.edu.cn
  • 基金资助:

    教育部博士点基金项目(编号:20040491003);国家自然科学基金项目“辽南变质核杂岩的组成、结构与区域构造内涵”(编号:40472105)资助.

Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application

Cao Shuyun,Liu Junlai   

  1. State Key Laboratory of Geological Processes and Mineral Resources (GPMR ),Beijing 100083,China; Key Laboratory of Lithosphere Tectonics and Lithoprobing Techology of Ministry of Education, China University of Geosciences, Beijing 100083, China
  • Received:2006-04-12 Revised:2006-09-12 Online:2006-10-15 Published:2006-10-15

    EBSD技术的发展,为岩石显微构造分析开辟了一个全新的领域。它与现代扫描电子显微镜和能谱分析等设备配合,可以同时对块状样品进行晶体结构与成分分析,从而使显微构造、微区成分与结晶学数据分析有机结合起来。
    EBSD技术可以精确、快速定量标定包括各种晶系晶体颗粒的晶格方位和描述晶体颗粒的边界、形态等特征,对于具有低角度边界的晶体颗粒提供精确数据,为阐述岩石变形机制提供重要约束,并为高级晶族和不透明矿物结晶学组构与变形机制研究提供了有效的手段。EBSD尤其使获取微米级甚至纳米级尺度上颗粒(亚颗粒)或相之间的定向差别(达到20 nm的空间分辨率和0.3度角度分辨率)成为可能。EBSD技术在矿物相鉴定、亚微域内的应变分析、矿物出溶作用等方面的应用,进一步证明了这一新技术在显微构造分析及相关领域的应用前景。其广泛应用必将带来岩石显微构造研究的新突破,也将成为未来岩石变形机制与岩石圈流变学研究取得飞速发展不可或缺的技术手段。

    The application of EBSD (electron backscatter diffraction) technique has pioneered a brand-new field of microstrucutral analysis of rocks. In combination of the application of other attachments (e.g. EDS) of SEM, the EBSD technique could provide chances for integrated studies of rock microstructures, compositions and crystallographic framework in micro-field.
    With EBSD technique can precisely and rapidly determine the crystallographic orientations and describe grain boundaries of crystal grains, and provide crystallographic data for grains with low angle grain boundaries. Such data further provide constraints for deformation mechanisms of rock deformation. The EBSD technique is also a powerful technique for the study of crystallographic textures and deformation mechanisms of high crystal category and opaque minerals. Very fine grains (or subgrains) with sizes of micron to nano scales are easily obtained with the EBSD technique (of about 20 nm spatial and 0.3° angular resolutions).
    The EBSD technique is also widely applied to phase identification, microstrain analysis and mineral exsolution analysis, suggesting wider application of the technique in microstructural analysis and related field. A breakthrough of microstructural analysis of rocks is expected with wide application of EBSD techniques. EBSD will become an indispensable technique which enhances rapid development of deformation mechanisms of rocks and rheology of the lithosphere.

中图分类号: 

[1] Liu Qing. EBSD technique and its application in materials science[J]. Chinese Journal of Stereology and Image Analysis, 2005, 10(4): 205-210. [刘庆. 电子背散射衍射技术在材料学中的应用[J]. 中国体视学与图像分析, 2005, 10(4): 205-210.]

[2] Prior DJ, Boyle AP, Brenker FE, et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks[J]. American Mineralogist,1999, 84:1 741-1 759.

[3] Bascou J, Barruol G, Vauchez A, et al. EBSD-measured lattice-preferred orientations and seismic properties of eclogites[J]. Tectonophysics, 2001, 342: 61-80.

[4] Trimby PW, Prior DJ. Microstructural imaging techniques: A comparison between light and scanning electron microscopy[J]. Tectonophysics,1999, 303: 71-81.

[5] Prior DJ, Wheeler J, Brenker FE. Crystal plasticity of natural garnet: New microstructural evidence[J]. Geology, 2000, 28: 1 003-1 006.

[6] Kleinschrodt R, Duyster JP. HT-deformation of garnet: An EBSD study on granulites from Sri Lanka, India and the Ivrea Zone[J]. Journal of Structural Geology, 2002, 24: 1 829-1 844.

[7] Bascou J, Tommasi A, Mainprice D. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites[J]. Journal of Structural Geology, 2002, 24: 1 357-1 368.

[8] Zhang Junfeng, Jin Zhenmin, Harry W. Green. Hydroxyl induced eclogite fabric and deformation mechanism[J]. Chinese Science Bulletin, 2005, 50(7): 685-690.

[9] Lloyd GE. Grain boundary contact effects during faulting of quartzite: An SEM/EBSD analysis[J]. Journal of Structural Geology, 2000, 22: 1 675-1 693.

[10] Leiss B, Barber DJ. Mechanisms of dynamic recrystallization in naturally deformed dolomite inferred from EBSP analyses[J]. Tectonophysics, 1999, 303: 51-69.

[11] Zhao Yonghong, Mecklenburgh J, Heidelbach F, et al. Experimental study of germinate olivine-spinel aggregates deformed in torsion[J]. Acta Petrologica Sinica, 2004, 20(3): 747-752. [赵永红, Mecklenburgh J, Heidelbach F,. 锗橄榄石-尖晶石扭转大变形实验研究[J]. 岩石学报,2004,20(3): 747-752.]

[12] Prior DJ, Wheeler J. Feldspar fabrics in a greenschist facies albite-rich mylonite from electron backscatter diffraction[J]. Tectonophysics, 1999, 303: 29-49.

[13] Stöckhert B, Duyster J, Trepmann C. Microdiamond daughter crystals precipitated from supercritical COH +silicate fluids included in garnet, Erzgebirge, Germany[J]. Geology, 2001, 29(5): 391-394.

[14] Tao XD. An EBSD Study on Mapping of Small Orientation Differences in Lattice Mismatched Heterostructures [D]. Candiacy: Lehigh University, 2003.

[15] Llana-Fúnnez S, Rutter EH. Distribution of non-plane strain in experimental compression of short cylinders of Solnhofen limestone[J]. Journal of Structural Geology, 2005, 27: 1 205-1 216.

[16] Feinberg JM, Wenk H-R, Renne R, et al. Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique[J]. American Mineralogist, 2004, 89: 462-466.

[17] Seto Y,Ohi S,Shimobayashi N. Clinopyroxene exsolution in wollastonite from Namaqualand granulite, South Africa[J]. American Mineralogist, 2006, 91: 446-450.

[18] Massonne HJ,Neuser RD. Ilmenite exsolution in olivine from the serpentinite body at Zöblitz, Saxonian Erzgebirge-microstructural evidence using EBSD[J]. Mineralogical Magazine, 2005, 69 (2): 119-124.

[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[3] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[4] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[5] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[6] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[7] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[8] 余星. 海底岩石地球化学研究中的“大数据”——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.
[9] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
[10] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[11] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[12] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[13] 汪小妹,曾志刚,欧阳荷根,殷学博,王晓媛,陈帅,张国良,武力. 大洋橄榄岩的蛇纹石化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.
[14] 牛向龙,李江海,冯军. 五台山新太古代块状硫化物矿床成矿作用研究——海底喷流沉积成因显微构造证据[J]. 地球科学进展, 2009, 24(9): 1009-1014.
[15] 龚汉松,杜传杨. 声发射预报地震的岩体力学分析[J]. 地球科学进展, 2008, 23(12): 1293-1298.
阅读次数
全文


摘要