[1] Iyer K, Austrheim H, John T, et al. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway[J].Chemical Geology, 2008, 249: 66-90. [2] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J].Comptes Rendus Geosciences,2003, 335: 825-852. [3] Renard A F. Perodotit von der St. Pauls Insel in Atlantischen Ozean [J]. Neues Jahrbuch für Mineralogie Abhandlungen,1879, 1: 390-394. [4] Fryer P. Recent Studies of Serpentinite Occurrences in the Oceans: Mantle-Ocean Interactions in the Plate Tectonic Cycle[J].Chemie der Erde,2002, 62: 257-302. [5] Shand S J. Rocks of the mid-Atlantic Ridge[J].Journal of Geology, 1949, 57 (1): 89-92. [6] Udintsev G B, Dmitriev L V. Ultrabasic rocks[C]//Maxwell A E, eds. The Sea, Ideas and Observations on Progress in the Study of the Seas 4. Wiley-Interscience, 1971:521-573. [7] Hekinian R, Bideau D, Cannat M,et al. Volcanic activity and crust mantle exposure in the ultrafast Garret transform fault near 13°28'S in the Pacific[J].Earth and Planetary Science Letters, 1992, 108: 259-275. [8] Lonsdale P. Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctions[J].Journal of Geophysical Research,1988, 93 (11): 13 551-13 574. [9] Hekinian R, Bideau D, Francheteau J,et al. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern Equatorial Pacific)[J].Journal of Geophysical Research, 1993, 98 (5): 8 069-8 094. [10] von Heune R, Aubouin J, Sci Shipboard Party. Site 567 [R]. Deep Sea Drilling Project Initial Reports Volume 84,Washington DC (US Govenment Printing Office), 1985:111-166. [11] Bowin C O, Nalwalk A J, Hersey J B. Serpentinized peridotite from north wall of the Puerto Rico Trench[J].Geological Society of America Bulletin, 1966, 77: 257-270. [12] Fisher R L, Engel C G. Ultramafic and Basaltic Rocks Dredged from the Nearshore Flank of the Tonga Trench[J].Geological Society of America Bulletin, 1969, 80: 1 373-1 378. [13] Maekawa H, Fryer P, Ozaki M. Incipient blueschist-facies metamorphism in the active subduction zone beneath the Mariana Forearc[C]//Taylor B, Natland J, eds.Active Margins and Marginal Basins of the Western Pacific. AGU Monograph Series, 1995, 88: 281-290. [14] Fryer P, Lockwood J, Becker N, et al. Significance of serpentine and blueschist mud volcanism in convergent margin settings[C]//Dilek Y, Moores E M, Elthon D,et al,eds.Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program. Geological Society America Special Paper, 2000, 349: 35-51. [15] Iyer K. Mechanisms of Serpentinization and Some Geochemical Effects[D]. Oslo: Department of Physics, University of Oslo, 2007. [16] Coulton A J, Harper G D. Timing of serpentinization in the Josephine ophiolite: Implications for the oceanic Moho[J]. EOS, Transactions American Geophysical Union,1992, 73(43): 537. [17] Früh-Green G L, Weissert H, Bernoulli D A. Multiple Fluid History Recorded in Alpine Ophiolites[J].Journal of the Geological Society,1990, 147: 959-970. [18] O'Hanley D S. Serpentinites: Records of Tectonic and Petrological History[M]. New York: Oxford University Press, 1996. [19] Schroeder T, John B, Frost B R. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges[J].Geology, 2002, 30: 367-370. [20] Shervais J W, Kolesar P, Andreasen K. A field and chemical study of serpentinization-Stonyford, California: Chemical flux and mass balance[J]. International Geology Review, 2005, 47: 1-23. [21] Hirth G, Kohlstedt D L. Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters,1996, 144(1/2): 93-108. [22] Hirth G, Kohlstedt D L. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[C]//Eiler J, ed. Inside the Subduction Factory. AGU Geophysical Monograph Series, 2004: 83-106. [23] Escartín J, Hirth G, Evans B. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults[J]. Journal of Geophysical Research,1997, 102: 2 897-2 913. [24] Escartín J, Hirth G, Evans B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges[J].Earth and Planetary Science Letters,1997, 151: 181-189. [25] Bach W, Paulick H, Garrido C J. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) [J].Geophysical Research Letters,2006: 33.L13306.doi:10.102912806GL025681. [26] Ranero C R, Morgan J P. McIntosh K Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature,2003, 425: 367-373. [27] Barnes J D, Straub S M. Chorine stable isotope variations in Izu Bonin tephra: Implications for serpentinite subduction[J]. Chemical Geology,2010, 272: 62-74. [28] Klein F, Bach W, Jöns N, et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta,2009, 73: 6 868-6 893. [29] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007, 20: 50-65. [30] Barnes J D, Paulick H, Sharp Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209) [J].Lithos,2009, 110: 83-94. [31] Dias S, Mills R A, Ribeiro da Costa I,et al. Tracing fluid-rock reaction and hydrothermal circulation at the Saldanha hydrothermal field [J]. Chemical Geology,2010,273(3/4):168-179. [32] Kelley D S, Karson J A, Früh-Green G L. A sepentinite-hosted ecosystem: The Lost City hydrothermal field[J]. Science,2005, 307: 1 428-1 434. [33] Lowell R P, Germanovich L N. On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests[J]. Journal of Geophysical Research-Solid Earth,1994, 99: 565-575. [34] Lister C R B. On the penetration of water into hot rock[J].Geophysical Journal of the Royal Astronomical Society,1974, 39: 465-509. [35] Bach W, Banerjee N R, Dick H J B. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10~16°E[J]. Geochemistry Geophysics Geosystems,2002, 3(7): 1 044. [36] Cannat M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Researchs, 1993, 98 (3): 4 163-4 172. [37] Karson J A, Thompson G, Humphris S E. Along-Axis variations in sea-floor spreading in the Mark area[J].Nature,1987, 328: 681-685. [38] MacDonald K C. Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone[J]. Annual Review of Earth and Planetary Sciences,1982, 10: 155-190. [39] Harper G D. The Josephine Ophiolite, Northwestern California [J]. Geological Society of America Bulletin,1984, 95: 1 009-1 026. [40] Mével C, Cannat M, Gente P. Emplacement of deep crustal and mantle rocks on the west median valley wall of the Mark area (MAR, 23°N)[J]. Tectonophysics, 1991, 190: 31-53. [41] Bougault H, Charlou J L, Fouquet Y, et al. Fast and slow spreading ridges: Structure and hydrothermal activity, ultramafic topographic highs and CH4 output [J].Journal of Geophysical Research, 1993, 98: 9 643-9 651. [42] Hebert R, Bideau D, Hekinian R. Ultramafic and mafic rocks from the Garret Transform Fault near 13°30′S on the East Pacific Rise: Igneous petrology[J]. Earth and Planetary Science Letters,1983, 65: 107-125. [43] Agrinier P, Hekinian R, Bideau D, et al. O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction[J].Earth and Planetary Science Letters,1995, 136: 183-196. [44] Fryer P, Fryer G J. Origins of non-volcanic seamounts in forearc environments[C]//Keating B H, Fryer P, Batiza R, et al,eds.Seamount Islands and Atolls. Washington DC: AGU Geophysical Monograph, 1987, 43: 61-69. [45] Ewans J, Hawkins J. Petrology of “seamounts” on the trench slope break[J]. EOS,1979, 60: 968. [46] Boillot G, Grimaud S, Mauffret A, et al.Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia bank, Earth Planet[J]. Earth and Planetary Science Letters, 1980, 48: 23-34. [47] Boillot G, Girardeau J, Kornprobst J. Rifting of the Galicia margin: Crustal thinning and emplacement of mantle rocks on the seafloor[C]//Boillot G, Winterer E L,eds. Proceedings ODP Scientific Results, Ocean Drilling Program, College Station, 1988,103: 741-756. [48] Boillot G, Féraud G, Recq M, et al. Undercrusting by serpentinites beneath rifted margins[J]. Nature,1989, 341: 523-525. [49] Bonatti E, Seyler M, Channel J, et al. Peridotites drilled from the Tyrrhenian sea[C]//Kasten K A, Mascle J,eds. Proceedings ODP Scientific Results,Ocean Drilling Program, College Station, 1990,107: 37-47. [50] Moody J B. Serpentinization: A review[J]. Lithos,1976, 9: 125-138. [51] O'Hanley D S. Solution to the volume problem in serpentinization[J].Geology,1992, 20: 705-708. [52] Wicks F J, Whittaker E J W. A reappraisal of the structure of serpentine minerals[J].Canadian Mineralogist,1975, 13: 227-243. [53] Uehara S, Shirozu H. Variations in chemical compositions and structural properties of antigorite[J]. Mineralogical Journal,1985, 12: 299-318. [54] Bailey S W. Structures and compositions of other trioctahedral 1:1 phyllosilicates[C]//Bailey S W, ed. Hydrous Phyllosilicates Other than Micas Reviews in Mineralogy,1988, 19: 169-188. [55] Miyashiro A, Shido F, Ewing M. Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24 and 30°N[J].Contributions to Mineralogy and Petrology, 1969, 23: 117-127. [56] Prichard H M. A petrographic study of the process of serpentinization in ophiolites and the ocean crust[J].Contributions to Mineralogy and Petrology, 1979, 68: 231-241. [57] Hébert R, Adamson A C, Komor S C. Metamorphic petrology of ODP Leg 109, Hole 670A, serpentinized peridotites: Serpentinization processes at a slow spreading ridge environment[C]//Detrick R, Honnorez J, Bryan W B,et al,eds. Proceedings ODP Scientific Results, Vols. 106 109, College Station, TX , 1990: 103-113. [58] Mével C, Stamoudi C. Hydrothermal alteration of the upper mantle section at Hess Deep[C]// vel C M, Gillis K, Allan J, eds. Proceedings ODP Scientific Results, College Station, TX, 1996,147: 293-309. [59] Oufi O, Cannat M, Horen H. Magnetic properties of variably serpentinized abyssal peridotites[J]. Journal of Geophysical Research, 2002, 107: 1-19. [60] Gahlan H A, Arai S, Ahmed A H, et al. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization[J]. Journal of African Earth Sciences,2006, 46: 318-330. [61] Toft P B, Hamed J A, Haggerty S E. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model[J]. Physics of the Earth and Planetary Interiors,1990, (1/2): 137-157. [62] Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N [J]. Geochemistry, Geophysics, Geosystems (G3), 2004, 5(9):Q09F26. [63] Beard J S, Frost B R, Fryer P,et al. Onset and Progression of Serpentinization and Magnetite Formation in Olivine-richTroctolite from IODP Hole U1309D[J].Journal of Petrology, 2009, 50: 387-403. [64] Wang X, Zeng Z, Chen J. Serpentinization of peridotites from the southern Mariana forearc[J].Progress in Natural Science, 2009,19: 1 287-1 295. [65] Bideau D, Hébert R, Hékinian R, et al. Metamorphism of deep seated rocks from the Garrett ultrafast transform (East Pacific Rise near 1325′S) [J]. Journal of Geophysical Research, 1991, 96: 10 079-10 099. [66] Kimball K L, Spear F S, Dick H J B. High temperature alteration of abyssal ultramafics from the Islas Orcadas Fracture Zone, South Atlantic[J].Contributionsto Mineralogy Petrology,1985, 91: 307-320. [67] Wicks F J, Whittaker E J W. Serpentine textures and serpentinization[J]. Canadian Mineralogist,1977, 15: 459-488. [68] Wicks F J,Plant A G. Electron-microprobe and X-ray microbeam studies of serpentine textures[J].Canadian Mineralogist,1979, 17: 785-830. [69] Gleuher Le, Livi M, Veblen K J T, et al.Serpentinization of enstatite from pernes, France: Reaction microstructures and the role of system openness [J]. American Mineralogist,1990, 75: 813-824. [70] Viti C, Mellini M, Rumori C. Exsolution and hydration of pyroxenes from partially serpentinized harzburgites[J].Mineralogical Magazine,2005, 69: 491-507. [71] Miller D J, Christensen N I. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, South of the Kane transform zone (MARK area)[C]//Karson J A, Cannat M, Miller D J,et al,eds. Proceeding of ODP, Science Results,College Station, TX, 1997. [72] Komor S C, Elthon D, Casey J F. Serpentinization of cumulate ultramafic rocks from the North Arm mountain massif of the bay of islands ophiolite [J]. Geochimica et Cosmochimica Acta,1985, 49: 2 331-2 338. [73] Furnes H,Pedersen R B, Stillman C J. The Leka Ophiolite Complex, Central Norwegian Caledonides-field characteristics and geotectonic significance[J]. Journal of the Geological Society,1988, 145: 401-412. [74] Horen H, Zamora M, Dubuisson G. Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge[J]. Geophysical Research Letters,1996, 23: 9-12. [75] Cann J R, Blackman D K, Smith D K, et al. Corrugated slip surfaces formed at North Atlantic ridgetransform intersections[J]. Nature,1997, 385: 329-332. [76] Carlson R L. The abundance of ultramafic rocks in the Atlantic Ocean crust [J].Geophysical Journal Internationa,2001, 144: 37-48. [77] Hess H H. History of the ocean basins[C]//Petrologic Studies, Buddington Volume. Geological Society of America, Boulder, CO, 1962: 599-620. [78] Watanbe T, Oguri H, Yano H,et al. Compressional and shear wave velocities in serpentinized peridotites[C]//American Geophysical Union, Fall Meeting(Abstract). San Francisco, 2007: 671. [79] Dyment J, ArkaniHamed J, Ghods A. Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: Insights from the shape of the anomalies[J]. Geophysics Journal International,1997, 129: 691-701. [80] Pariso J E, Rommevaux C, Sempér J C. Three dimensional inversion of marine magnetic anomalies: implications for crustal accretion along the Mid-Atlantic Ridge (28°~31°30′N) [J].Marine Geophysical Researches, 1996, 18: 85-101. [81] Dyment J, ArkaniHamed J. Spreading-rate dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies[J].Geophysics Journal International,1995, 121: 789-804. [82] Escartín J, Hirth G, Evans B. Strength of slightly serpentinizedperidotites: Implications for the tectonics of oceanic lithosphere[J].Geology,2001, 29: 1 023-1026. [83] Fouquet Y,Cherkashov G, Charlou J L,et al. Serpentine cruise-ultramafi c hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields[J].InterRidge News,2008, 17: 16-41. [84] Charlou J L, Donval J P, Konn C, et al. High flux of hydrogen, abiogenic methane and heavier hydrocarbons from the slow-spreading Mid-Atlantic Ridge [J].EGU General Assembley, Journal of Geophysical Research Abstracts, 2008, 10: A-03883. [85] Douville E, Charlou J L, Oelkers E H, et al. The Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J].Chemical Geology, 2002, 184: 37-48. [86] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J].Chemical Geology, 2002, 191(4): 345-359. [87] Dias A S, Barriga F J. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR [J]. Marine Geology, 2006, 225: 157-175. [88] Kelley D S, Karson J A, Blackman D K, et al. An offaxis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N [J].Nature,2001, 412: 145-149. [89] Yves F, Luc J C, Fernando B. Modern Seafloor Hydrothermal Deposites Hosted in Ultramafic Rocks [C]. 2002 Denver Annual Meeting, 2002:194-197. [90] Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge [J]. Mineralium Deposita,2006, 41: 52-67. [91] Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge[J].Earth Planetary Science Letters,2008, 275: 61-69. [92] Bogdanov Y, Sagalevitch A M, Chernayev E S, et al.A study of the hydrothermal field at 14°45′N on the Mid-Atlantic Ridge using the “MIR” submersibles[J]. BRIDGE News,1995, 19: 9-13. [93] Barriga F J A S, Fouquet Y, Almeida A, et al. Discovery of the Saldanha Hydrothermal Field on the Famous Segment of the MAR (36° 30′N) [C]. AGU-Fall Meeting, Eos Transactions, 1998, 79(45): F67. [94] Früh-Green G, Kelley D S, Bernasconi S M, et al. 30000 years of hydrothermal activity at the Lost City vent field [J]. Science,2003, 301: 495-498. [95] Allen D, Seyfried W E. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems[J].Geochimica et Cosmochimica Acta, 2004, 67: 1 347-1 354. [96] Wetzel L R, Shock E L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions[J]. Journal of Geophysical Research-Solid Earth,2000, 105: 8 319-8 340. [97] Tivey M K.Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007,20:50-65. [98] Allen D E, Seyfried W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400℃, 500 bars[J].Geochimica et Cosmochimica Acta,2003, 67: 1 531-1 542. [99] French B M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J].Reviews of Geophysics,1966, 4: 223253. [100] Neal C, Stanger G. Hydrogen generation from mantle source rocks in Oman[J].Earth and Planetary Science Letters,1983, 66: 315-320. [101] Berndt M E, Allen D E, Seyfried W E. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bars[J].Geology,1996, 24: 671-671. [102] Abrajano T A, Sturchio N C, Bohlke J K, et al.Methane hydrogen gas seeps, zambales ophiolite, philippines-deep or shallow origin[J]. Chemical Geology, 1988, 71: 211-222. [103] Abrajano T A, Sturchio N C, Kennedy B M, et al. Geochemistry of reduced gas related to serpentinization of the zambales ophiolite, philippines [J]. Applied Geochemistry,1990, 5: 625-630. [104] Rona P A, Bougault H, Charlou J L, et al. Hydrothermal circulation, serpentinization, and degassing at a rift-Valley Fracture-Zone intersection-Mid-Atlantic ridge near 15°N, 45°W[J].Geology,1992, 20: 783-786. [105] Charlou J L, Donval J P. Hydrothermal Methane Venting between 12°N and 26°N Along the Mid-Atlantic Ridge[J].Journal of Geophysical Research,1993, 98: 9 625-9 642. [106] Lowell R P,Rona P A.Scafloor hydrothermal systems driven by the scrpcntinization of periotite[J].Geophysical Research Letters, 2002, 29(26): 1-5. [107] MacDonald A H, Fyfe W S. Rate of serpentinization in seafloor Hydrothermal Systems[J].Tectonophysics, 1985, 116: 123-l35. |