地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 152 -165. doi: 10.11867/j.issn.1001-8166.2018.02.0152

综述与评述 上一篇    下一篇

早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展
佟小雪 1, 2, 3( ), 王长乐 1, 2, 3, 彭自栋 1, 2, 3, 南景博 3, 4, 黄华 5, 张连昌 1, 2, 3, *( )   
  1. 1.中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029
    2.中国科学院地球科学研究院(筹),北京 100029
    3.中国科学院大学,北京 100049
    4.深海地质与地球化学研究室,中国科学院深海科学与工程研究所,海南 三亚 572000
    5.中国冶金地质总局矿产资源研究院,北京 101300
  • 收稿日期:2017-10-12 修回日期:2017-11-27 出版日期:2018-02-20
  • 通讯作者: 张连昌 E-mail:xiaoxuetong1993@mail.iggcas.ac.cn;lczhang@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金项目“晚太古代清原绿岩带BIF与VMS矿床的成因联系及沉积环境”(编号:41572076);国家自然科学基金青年科学基金项目“霍邱李老庄BIF矿区磁铁矿—菱镁矿组合成因机制研究”(编号:41602097)资助

Primary Mineral Information and Depositional Models of Relevant Mineral Facies of the Early Precambrian BIF—A Preliminary Review

Xiaoxue Tong 1, 2, 3( ), Changle Wang 1, 2, 3, Zidong Peng 1, 2, 3, Jingbo Nan 3, 4, Hua Huang 5, Lianchang Zhang 1, 2, 3, *( )   

  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
    2.Institutes of Earth Science, Chinese Academy of Sciences, Beijing 100029,China
    3.University of Chinese Academy of Sciences, Beijing 100049,China
    4.Laboratory of Deep Sea Geology and Geochemistry, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Hainan Sanya 572000,China
    5.Institute of Mineral Resources Research,China Metallurgical Geology Bureau,Beijing 101300,China
  • Received:2017-10-12 Revised:2017-11-27 Online:2018-02-20 Published:2018-04-02
  • Contact: Lianchang Zhang E-mail:xiaoxuetong1993@mail.iggcas.ac.cn;lczhang@mail.iggcas.ac.cn
  • About author:

    First author:Tong Xiaoxue(1993-), female, Tangshan City, Hebei Province, Ph.D student. Research areas include BIF iron ore deposit.E-mail:xiaoxuetong1993@mail.iggcas.ac.cn

  • Supported by:
    *Project supported by the National Natural Science Foundation of China “The genetic connection and depositional environment of the BIF and VMS in late Archean greenstone belt in Qingyuan, China” (No.41572076) and “The genetic mechanism of magnetite and magnesite of Lilaozhuang BIF in Huoqiu” (No.41602097)

条带状铁建造 (BIF)原生矿物组成有助于约束其沉积相和沉积环境,当前主要认为三价铁氢氧化物或铁硅酸盐微粒 (主要成分为铁蛇纹石或黑硬绿泥石) 可能是BIF原生矿物的主要成分,在后期成岩或变质作用过程中转变为赤铁矿、磁铁矿、菱铁矿等矿物。根据BIF的矿物组合可将其沉积相划分为氧化物相、硅酸盐相和碳酸盐相。通过沉积地层学和地球化学等方法研究,以古元古代大氧化事件为标志将沉积相总结为“缺氧还原”和“分层海洋”2种相模式:大氧化事件前,古海洋整体处于缺氧还原环境,BIF沉积相从远岸到近岸呈赤铁矿相—磁铁矿相—碳酸盐相分布,如南非West Rand群BIF (2.96~2.78 Ga) 和Kuruman BIF (约2.46 Ga);大氧化事件期间及之后,古海洋上部氧化、下部还原,BIF沉积相与之前截然相反,从远岸到近岸呈碳酸盐相—磁铁矿相—赤铁矿相分布,如中国袁家村BIF (2.2~2.3 Ga) 和加拿大Sokoman铁建造 (约1.88 Ga)。总体看来,只有特定的沉积环境才能形成这种特殊的地质历史上不再重复出现的沉积建造,而原生矿物组成的甄别和推导、沉积相的形成机制、BIF沉淀条件的准确限定和微生物活动与BIF的关联等问题是推测古海洋环境的关键所在,也是目前亟待解决的问题。

The primary mineral compositions of BIF are regarded as ferric oxyhydroxide or iron silicate nanoparticles (mainly greenalite and stilpnomelane ) whichcan transform into minerals like hematite, magnetite and siderite. On the basis of predominant iron minerals, three distinctive sedimentary facies are recognized in BIF: oxide facies, silicate facies and carbonate facies. Marked by the Great Oxidation Event (GOE, 2.4~2.2 Ga), sedimentary facies can be divided into two models: “anoxic and reducing” model and “stratified ocean” model. The ancient ocean was anoxic and reducing before GOE, and under this circumstance, BIF was distributed from the distal to proximal zones transforming from hematite facies through magnetite facies to carbonate facies, such as West Rand Group BIF (2.96~2.78 Ga) and Kuruman BIF (~2.46 Ga) in south Africa. However, the ancient ocean was a stratified ocean during and after GOE, which means that shallow seawater was oxidizing while deeper seawater was reducing, leading to an opposite sedimentary facies distribution compared to the former one: BIF was distributed from the distal to proximal zones transforming from carbonate facies through magnetite facies to hematite facies, such as Yuanjiacun BIF in China (~2.3 Ga) and Sokoman iron formation in Canada (~1.88 Ga). Overall, BIF is an unrepeatable formation in geological history, which can only form in specific sedimentary environment. The key point to speculate the paleo-ocean environment, namely the problems to be solved at the moment, is to identify and derive the primary mineral compositions, to make sure the genetic mechanism of sedimentary facies especially silicate facies, to restrict the sedimentary conditions and to study microbial activities contacting with BIF.

中图分类号: 

图1 华北克拉通古元古代袁家村BIF矿物共生次序图 (据参考文献[26]修改)
Fig.1 Schematic paragenetic sequence for the Yuanjiacun BIF in the North China Craton (modified after reference[26])
图2 反射光下赤铁矿从边缘向中心逐步交代黑硬绿泥石微粒 [ 10 ]
(a)燧石 (ch) 条带中的黑硬绿泥石微粒 (stp);(b),(c)黑硬绿泥石微粒边缘被赤铁矿 (hem) 交代;(d),(e)赤铁矿包裹黑硬绿泥石核;(f)赤铁矿完全交代黑硬绿泥石
Fig.2 Reflected Light (RL) image showing that hematite replaces stilpnomelane microgranules from margin to cores and finally turns into solid hematite microgranules [ 10 ]
(a) Stilpnomelane microgranule (stp) in chert (ch). (b),(c) Stilpnomelane microgranules (stp) surrounded by thin, discontinuous rims of hematite (hem). (d),(e) Thick rims of hematite (hem) around stilpnomelane core. (f) Hematite microgranule
表1 BIF沉积相主要特征 (据参考文献[1]修改)
Table 1 Principal characters of BIF sedimentary facies (modified after reference[1])
图3 Kuruman BIF的沉积模式 (据参考文献[67]修改)
Fig.3 Model for deposition of Kuruman banded iron formation (modified after reference[67])
图4 West Rand群中与页岩相关铁建造的沉积模型 [ 85 ]
反应(1)引自参考文献[45],反应(2)引自参考文献[66]
Fig.4 Simplified depositional model for the shale-associated iron formation of the West Rand Group [ 85 ]
Reaction (1) adapted from reference[45] and reaction (2) taken from reference[66]
图5 袁家村BIF沉积相的沉淀模型 [ 28 ]
反应(2)和(3)分别源自参考文献[67]和[45];反应(4)据参考文献[55]修改;反应(6)来自参考文献[66]; 反应(7)来自参考文献[86]
Fig.5 Conceptual depositional model for the Paleoproterozoic Yuanjiacun BIF [ 28 ]
Reactions (2) and (3) are adapted from reference [67] and [45], respectively; Reaction (4) is modifed after reference[55]; Reaction (6) is from reference[66], and reaction (7) is adapted from reference[86]
图6 加拿大Sokoman铁建造沉积相图(据参考文献[81]修改)
SWB为风暴浪基面;FWB为好天气浪基面
Fig.6 Conceptual depositional model for Sokoman iron formation in Canada (modified after reference[81])
SWB: Storm Wave Base. FWB: Fair-weather Wave Base
[1] James H L.Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3):235-293.
doi: 10.2113/gsecongeo.49.3.235     URL    
[2] James H L.Distribution of banded Iron-formation in space and time[J]. Developments in Precambrian Geology, 1983,6: 471-490.
doi: 10.1016/S0166-2635(08)70053-7     URL    
[3] Trendall A F.The significance of iron-formation in the precambrian stratigraphic record[M]∥Altermann W, Corcoran P L, eds. Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Oxford, UK: Blackwell Publishing Ltd., 2002.
[4] Huston D L, Logan G A.Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 41-55.
doi: 10.1016/S0012-821X(04)00034-2     URL    
[5] Klein C.Some Precambrian Banded Iron-Formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin[J]. American Mineralogist, 2005, 90(10): 1 473-1 499.
doi: 10.2138/am.2005.1871     URL    
[6] Bekker A, Slack J F, Planavsky N, et al.Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes[J]. Economic Geology, 2010, 105: 467-508.
doi: 10.2113/gsecongeo.105.3.467     URL    
[7] Wang Changle, Zhang Lianchang, Liu Li,et al.Research progress of Precambrian iron formations abroad and some problems deserving further discussion[J]. Mineral Deposits, 2012, 31(6):1 311-1 325.
[王长乐, 张连昌, 刘利,等. 国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J]. 矿床地质, 2012, 31(6): 1 311-1 325.]
doi: 10.3969/j.issn.0258-7106.2012.06.015     URL    
[8] Zhang Lianchang, Zhai Mingguo, Wan Yusheng, et al.Study of the Precambrian BIF-iron deposits in the North China craton: Progresses and questions[J]. Acta Petrologica Sinica, 2012, 28(11): 3 431-3 445.
[张连昌, 翟明国, 万渝生,等.华北克拉通前寒武纪BIF铁矿研究:进展与问题[J]. 岩石学报, 2012, 28(11):3 431-3 445.]
[9] Haugaard R, Frei R, Stendal H, et al.Petrology and geochemistry of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and depositional environment[J]. Precambrian Research, 2013, 229: 150-176.
doi: 10.1016/j.precamres.2012.04.013     URL    
[10] Rasmussen B, Krapez B, Meier D B.Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for post-depositional oxidation of iron-bearing minerals[J]. Geological Society of America Bulletin, 2014, 126(3/4): 438-446.
doi: 10.1130/B30944.1     URL    
[11] Raye U, Pufahl P K, Kyser T K, et al.The role of sedimentology, oceanography and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada[J].Geochimica et Cosmochimica Acta, 2015, 164: 205-220.
doi: 10.1016/j.gca.2015.05.020     URL    
[12] Sun S, Konhauser K O, Kappler A,et al.Primary hematite in Neoarchean to Paleoproterozoic oceans[J].Geological Society of America Bulletin, 2015, 127(5/6): 850-861.
doi: 10.1130/B31122.1     URL    
[13] Rasmussen B, Muhling J R, Suvorova A, et al.Dust to dust: Evidence for the formation of “primary” hematite dust in banded iron formations via oxidation of iron silicate nanoparticles[J]. Precambrian Research, 2016, 284:49-63.
doi: 10.1016/j.precamres.2016.07.003     URL    
[14] Li Y L, Konhauser K O, Zhai M G.The formation of magnetite in the early Archean oceans[J]. Earth and Planetary Science Letters, 2017, 466: 103-114.
doi: 10.1016/j.epsl.2017.03.013     URL    
[15] Gross G A.A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 1980, 18(1): 215-222.
doi: 10.1016/S0304-3991(79)80026-1     URL    
[16] Li Yanhe, Hou Kejun, Wan Defang, et al.A compare geochemistry study for Algoma-and Superior-type banded iron formations[J]. Acta Petrologica Sinica, 2012, 28(11): 3 513-3 519.
[李延河, 侯可军, 万德芳,等. Algoma型和Superior型硅铁建造地球化学对比研究[J]. 岩石学报, 2012, 28(11):3 513-3 519.]
URL    
[17] Klein C, Beukes N J.Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada[J]. Economic Geology, 1993, 88(3):542-565.
doi: 10.2113/gsecongeo.88.3.542     URL    
[18] Klein C, Ladeira E A.Geochemistry and mineralogy of neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the Urucum district, Mato Crosso Do Sul, Brazil[J]. Economic Geology, 2004, 99(6):1 233-1 244.
doi: 10.2113/gsecongeo.99.6.1233     URL    
[19] Basta F F, Maurice A E, Fontboté L, et al.Petrology and geochemistry of the Banded Iron Formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF[J]. Precambrian Research, 2011, 187(3):277-292.
doi: 10.1016/j.precamres.2011.03.011     URL    
[20] Li Houmin, Wang Denghong, Li Lixing, et al.Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 2012, 39(3):559-580.
[李厚民, 王登红, 李立兴,等. 中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质, 2012, 39(3):559-580.]
doi: 10.3969/j.issn.1000-3657.2012.03.001     URL    
[21] Cox G M, Halverson G P, Minarik W G, et al.Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance[J]. Chemical Geology, 2013, 362(1):232-249.
doi: 10.1016/j.chemgeo.2013.08.002     URL    
[22] Hou Kejun.Formation Mechanism of Different Types of Banded Iron Formations of China: Constraints from Iron, Silicon, Oxygen and Sulfur Isotopes China[D]. Beijing: University of Geosciences, 2014.
[侯可军. 我国不同类型条带状破铁建造形成机制的铁硅氧硫同位素地球化学制约[D]. 北京:中国地质大学, 2014.]
[23] Krapež B, Barley M E, Pickard A L.Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the early Palaeoproterozoic Brockman Supersequence of Western Australia[J].Sedimentology, 2003, 50(5): 979-1 011.
doi: 10.1046/j.1365-3091.2003.00594.x     URL    
[24] Rasmussen B, Meier D B, Krapez B,et al.Iron silicate microgranulesas precursor sediments to 2.5-billion-year-old banded iron formations[J]. Geology, 2013, 41(4): 435-438.
doi: 10.1130/G33828.1     URL    
[25] Rasmussen B, Krapez B, Muhling J R.Hematite replacement of iron-bearingprecursor sediments in the 3.46-b.y.-old Marble Bar Chert, Pilbara craton, Australia[J]. Geological Society of America Bulletin, 2014, 126(9/10):1 245-1 258.
doi: 10.1130/B31049.1     URL    
[26] Wang Changle, Zhang Lianchang, Lan Caiyun,et al.Analysis of sedimentary facies and depositional environment of the Yuanjiacun banded iron formation in the Lüliang area,Shanxi Province[J]. Acta Petrologica Sinica, 2015, 31(6): 1 671-1 693.
[王长乐, 张连昌, 兰彩云,等. 山西吕梁袁家村条带状铁建造沉积相与沉积环境分析[J]. 岩石学报, 2015, 31(6): 1 671-1 693.]
URL    
[27] Zhang Qiusheng.Geology and Metallogeny of the Early Precambrain in China[M]. Changchun: Jinlin People’s Publishing House, 1984.
[张秋生. 中国早前寒武纪地质及成矿作用[M].长春:吉林人民出版社, 1984.]
[28] Wang C L, Konhauser K O, Zhang L C.Depositional environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China[J].Economic Geology, 2015, 110(6): 1 515-1 539.
doi: 10.2113/econgeo.110.6.1515     URL    
[29] Sun S, Li Y L.Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old: Constraints from electron microscopic, X-ray diffraction and Mössbauer spectroscopic investigations[J].Precambrian Research, 2017, 289:1-17.
doi: 10.1016/j.precamres.2016.11.010     URL    
[30] Siever R.The silica cycle in the Precambrian[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3 265-3 272.
doi: 10.1016/0016-7037(92)90303-Z     URL    
[31] Konhauser K O, Amskold L, Lalonde S V, et al.Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 87-100.
doi: 10.1016/j.epsl.2007.03.026     URL    
[32] Garrels R M.A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 1987, 287: 81-106.
doi: 10.2475/ajs.287.2.81     URL    
[33] Posth N R, Hegler F, Konhauser K O, et al.Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans[J]. Nature Geoscience, 2008, 1(10):703-708.
doi: 10.1038/ngeo306     URL    
[34] Ewers W E.Chemical factors in the deposition and diagenesis of banded iron-formation[C]∥Trendall A F, Morris R C,eds. Banded Iron-Formation: Facts and Problems. Amsterdam: Elsevier, 1983: 491-512.
[35] Fischer W W, Knoll A H.An iron shuttle for deep-water silica in Late Archean and early Paleoproterozoic iron formation[J]. Geological Society of America Bulletin, 2009, 121(1/2): 222-235.
doi: 10.1130/B26328.1     URL    
[36] Delvigne C, Cardinal D, Hofmann A, et al. Stratigraphic changes of Ge/Si, REE+Y and silicon isotopes as insights into the deposition of a Mesoarchean banded iron formation[J]. Earth and Planetary Science Letters, 2012, 355/356: 109-118.
doi: 10.1016/j.epsl.2012.07.035     URL    
[37] Pickard A L, Barley M E, Krapež B.Deep-marine depositional setting of banded iron formation: Sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia[J]. Sedimentary Geology, 2004, 170(1/2): 37-62.
doi: 10.1016/j.sedgeo.2004.06.007     URL    
[38] Ayres D E.Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge Member, Hamersley Group, Western Australia[J]. Economic Geology, 1972, 67(8): 1 214-1 233.
doi: 10.2113/gsecongeo.67.8.1214     URL    
[39] Li Y L, Konhauser K O, Kappler A, et al.Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations[J]. Earth and Planetary Science Letters, 2012, 361(1):229-237.
doi: 10.1016/j.epsl.2012.10.025     URL    
[40] Taitel-Goldman N, Singer A.Synthesis of clay-sized iron oxides under marine hydrothermal conditions[J].Clay Minerals,2002, 37(4): 719-731.
doi: 10.1180/0009855023740073     URL    
[41] Ahn J H, Buseck P R.Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation[J]. Science, 1990, 250(4 977): 111-113.
doi: 10.1126/science.250.4977.111     URL     pmid: 17808243
[42] Morris R C.Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia[J]. Precambrian Research, 1993, 60(1): 243-286.
doi: 10.1016/0301-9268(93)90051-3     URL    
[43] Schwertmann U, Murad E.Effect of pH on the formation of goethite and hematite from ferrihydrite[J]. Clays and Clay Minerals, 1983, 31(4): 277-284.
doi: 10.1346/CCMN.1983.0310405     URL    
[44] Li Y L, Konhauser K O, Cole D R,et al.Mineral ecophysiological data provide growing evidence for microbial activity in banded iron formations[J]. Geology, 2011, 39(8): 707-710.
doi: 10.1130/G32003.1     URL    
[45] Ohmoto H.Nonredox transformations of magnetite-hematite in hydrothermal systems[J]. Economic Geology, 2003,98(1): 157-161.
doi: 10.2113/98.1.157     URL    
[46] Pecoits E, Gingras M K, Barley M E,et al.Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry[J]. Precambrian Research, 2009, 172(1): 163-187.
doi: 10.1016/j.precamres.2009.03.014     URL    
[47] Lovley D R.Dissimilatory metal reduction[J]. Annual Reviews in Microbiology, 1993, 47(47): 263-290.
doi: 10.1146/annurev.mi.47.100193.001403     URL    
[48] Frost C D, von Blankenburg F, Schoenberg R, et al. Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation[J]. Contributions to Mineralogy and Petrology, 2007, 153(2): 211-235.
doi: 10.1007/s00410-007-0225-5     URL    
[49] Johnson C M, Beard B L, Klein C,et al.Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis[J].Geochimica et Cosmochimica Acta, 2008, 72(1): 151-169.
doi: 10.1016/j.gca.2007.10.013     URL    
[50] Nealson K H, Myers C R.Iron reduction by bacteria: A potential role in the genesis of banded iron formations[J].American Journal of Science, 1990, 290(1): 35-45.
doi: 10.1029/JB095iB01p00649     URL    
[51] French B M.Stability relations of siderite (FeCO3) in the system Fe-C-O[J]. American Journal of Science, 1971, 271(1): 37-78.
doi: 10.2475/ajs.271.1.37     URL    
[52] Koziol A M.Experimental determination of siderite stability and application to Martian Meteorite ALH84001[J].American Mineralogist, 2004, 89(2/3): 294-300.
doi: 10.2138/am-2004-2-306     URL    
[53] Knauth L P.Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1/2): 53-69.
doi: 10.1128/JVI.80.2.1059-1063.2006     URL    
[54] Bau M, Dulski P.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
doi: 10.1016/S0009-2541(98)00142-9     URL    
[55] Heimann A, Johnson C M, Beard B L,et al.Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments[J]. Earth and Planetary Science Letters, 2010, 294(1/2): 8-18.
doi: 10.1016/j.epsl.2010.02.015     URL    
[56] Klein C, Beukes N J.Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa[J]. Economic Geology, 1989, 84(7): 1 733-1 774.
doi: 10.2113/gsecongeo.84.7.1733     URL    
[57] Kaufman A J, Hayes J M, Klein C.Primary and diagenetic controls of isotopic compositions of iron-formation carbonates[J]. Geochimica et Cosmochimica Acta, 1990, 54(12): 3 461-3 473.
doi: 10.1016/0016-7037(90)90298-Y     URL     pmid: 11537196
[58] Bolhar R, Van Kranendonk M J, Kamber B S. Trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—Formation from hydrothermal fluids and shallow seawater[J]. Precambrian Research, 2005, 137(1): 93-114.
doi: 10.1016/j.precamres.2005.02.001     URL    
[59] Fischer W W, Schroeder S, Lacassie J P,et al.Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal craton, South Africa[J]. Precambrian Research, 2009, 169(1/4): 15-27.
doi: 10.1016/j.precamres.2008.10.010     URL    
[60] Liu L, Zhang L C, Dai Y P.Formation age and genesis of the banded iron formations from the Guyang Greenstone Belt, Western North China Craton[J].Ore Geology Reviews, 2014, 63(1): 388-404.
doi: 10.1016/j.oregeorev.2013.10.011     URL    
[61] Teutsong T, Bontognali T R R, Ndjigui P D,et al. Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: Implications for its origin[J]. Ore Geology Reviews, 2017, 80: 267-288.
doi: 10.1016/j.oregeorev.2016.07.003     URL    
[62] Shen Baofeng, Luo Hui, Han Guogang,et al.Archean Geology and Metallization in Northern Liaoning Province and Southern Jilin Province[M]. Beijing: Geological Publishing House, 1994.
[沈保丰, 骆辉, 韩国刚,等. 辽北—吉南太古宙地质及成矿[M].北京:地质出版社, 1994.]
[63] Rasmussen B, Krapez B, Muhling J R,et al.Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s frst iron age[J]. Geology, 2015, 43(4): 303-306.
doi: 10.1130/G36309.1     URL    
[64] Tosca N J, Guggenheim S, Pufahl P K.An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater[J]. Geological Society of America Bulletin, 2016, 128(3/4): 511-530.
doi: 10.1130/B31339.1     URL    
[65] Haugaard R, Pecoits E, Lalonde S,et al.The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy[J]. Precambrian Research, 2016, 273(3): 12-37.
doi: 10.1016/j.precamres.2015.10.024     URL    
[66] Konhauser K O, Hamade T, Morris R C,et al.Could bacteria have formed the Precambrian banded iron formations?[J]. Geology, 2002, 30(12): 1 079-1 082.
doi: 10.1130/0091-7613(2002)0302.0.CO;2     URL    
[67] Beukes N J, Gutzmer J.Origin and paleoenvironmental signifcance of major iron formations at the Archean-Paleoproterozoic boundary: Reviews[J]. Economic Geology, 2008, 15: 5-47.
URL    
[68] Li Y L.Micro-and nanobands in Late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions[J]. Earth and Planetary Science Letters, 2014, 391(2): 160-170.
doi: 10.1016/j.epsl.2014.01.044     URL    
[69] Lascelles D F.Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations[J]. Ore Geology Reviews, 2007, 32(1/2): 381-411.
doi: 10.1016/j.oregeorev.2006.11.005     URL    
[70] Alibert C, McCulloch M T. Rare earth element and Nd isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia[J]. Geochimica et Cosmochimica Acta, 1993, 57(1): 187-204.
doi: 10.1016/0016-7037(93)90478-F     URL    
[71] Halevy I, Alesker M, Schuster E M.A key role for green rust in the Precambrian oceans and the genesis of iron formations[J]. Nature Geoscience, 2017, 10:135-139.
doi: 10.1038/ngeo2878     URL    
[72] Anbar A D, Rouxel O.Metal stable isotopes in paleoceanography[J].Annual Review of Earth and Planetary Sciences, 2007, 35(1): 717-746.
doi: 10.1146/annurev.earth.34.031405.125029     URL    
[73] Planavsky N, Bekker A, Rouxel O J, et al.Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formationsrevisited: New perspectives on the significance and mechanisms of deposition[J]. Geochimica et Cosmochimica Acta, 2010,74(22): 6 387-6 405.
doi: 10.1016/j.gca.2010.07.021     URL    
[74] Li Zhihong, Zhu Xiangkun, Tang Suohan,et al.Characteristics of rare earth elements and geological significations of BIFs from Jidong, Wutai and Lüliang area[J].Geoscience, 2010, 24(5): 840-846.
[李志红, 朱祥坤, 唐索寒,等. 冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义[J]. 现代地质, 2010, 24(5):840-846.]
doi: 10.3969/j.issn.1000-8527.2010.05.003     URL    
[75] Shen Qihan, Song Huixia, Yang Chonghui, et al.Petrochemical characteristics and geological significations of banded iron formations in the Wutai Mountain of Shanxi and Qian’an of eastern Hebei[J]. Acta Petrologica et mineralogical, 2011, 30(2): 161-171.
[沈其韩, 宋会侠, 杨崇辉,等. 山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2):161-171.]
doi: 10.3969/j.issn.1000-6524.2011.02.001     URL    
[76] Liu Lei, Yang Xiaoyong.Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance: Taking the Bantaizi and Zhouyoufang deposits as examples[J]. Acta Petrologica Sinica, 2013, 29(7): 2 551-2 566.
[刘磊, 杨晓勇. 安徽霍邱BIF铁矿地球化学特征及其成矿意义:以班台子和周油坊矿床为例[J]. 岩石学报, 2013, 29(7):2 551-2 566.]
URL    
[77] Yao Tong, Li Houmin, Yang Xiuqing, et al.Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅱ. Characteristics of rare earth elements[J]. Acta Petrologica Sinica, 2014, 30(5):1 239-1 252.
[姚通, 李厚民, 杨秀清,等. 辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征[J]. 岩石学报, 2014, 30(5):1 239-1 252.]
URL    
[78] Cabral A R, Lehmann B, Gomes A A S, et al. Episodic negative anomalies of cerium at the depositional onset of the 2.65 Ga Itabira iron formation, Quadriltero Ferrífero of Minas Gerais, Brazil[J].Precambrian Research, 2016, 276: 101-109.
doi: 10.1016/j.precamres.2016.01.031     URL    
[79] Wang C L, Zhang L C, Dai Y P, et al.Source characteristics of the 2.5 Ga Wangjiazhuang banded iron formation from the Wutai greenstone belt in the North China Craton: Evidence from neodymium isotopes[J]. Journal of Asian Earth Sciences, 2014, 93: 288-300.
doi: 10.1016/j.jseaes.2014.07.038     URL    
[80] De Carlo E H, Green W J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica[J]. Geochimica et Cosmochimica Acta, 2002, 66(8): 1 323-1 333.
doi: 10.1016/S0016-7037(01)00861-4     URL    
[81] Pufahl P K, Hiatt E E.Oxygenation of the Earth’s atmosphere-ocean system: A review of physical and chemical sedimentologic responses[J]. Marine and Petroleum Geology, 2012, 32(1): 1-20.
doi: 10.1016/j.marpetgeo.2011.12.002     URL    
[82] Satkoski A M, Beukes N J, Li W,et al.A redox-stratified ocean 3.2 billion years ago[J]. Earth and Planetary Science Letters, 2015, 430: 43-53.
doi: 10.1016/j.epsl.2015.08.007     URL    
[83] Groves D I, Phillips N, Ho S E, et al.Craton-scale distribution of Archean greenstone gold deposits: Predictive capacity of the metamorphic model[J]. Economic Geology, 1987, 82(8): 2 045-2 058.
doi: 10.2113/gsecongeo.82.8.2045     URL    
[84] Bekker A, Krapež B, Slack J F, et al.Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes—A reply[J]. Economic Geology, 2012, 107(2): 379-380.
doi: 10.2113/econgeo.107.2.379     URL    
[85] Smith A J, Beukes N J, Gutzmer J.The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa[J]. Economic Geology, 2013, 108(1): 111-134.
doi: 10.2113/econgeo.108.1.111     URL    
[86] Kappler A, Pasquero C, Konhauser K O, et al.Deposition of banded iron formations by anoxygenic phototrophic Fe (II)-oxidizing bacteria[J]. Geology, 2005, 33(11): 865-868.
doi: 10.1130/G21658.1     URL    
[87] Köhler I, Konhauser K O, Papineau D,et al.Biological carbon precursor to diagenetic siderite with spherical structures in iron formations[J]. Nature Communications, 2013, 4(2): 1 741.
doi: 10.1038/ncomms2770     URL     pmid: 23612282
[88] Huang Ke, Zhu Mingtian, Zhang Lianchang, et al.LA-ICP-MS analysis of magnetite and application in genesis of mineral deposit[J]. Advances in Earth Science,2017,32(3):262-275.
[黄柯, 朱明田, 张连昌,等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3):262-275.]
doi: 10.11867/j.issn.1001-8166.2017.03.0262     URL    
[1] 侯 渭,谢鸿森. 陨石矿物种类的研究进展和矿物表[J]. 地球科学进展, 2000, 15(2): 228-236.
阅读次数
全文


摘要