Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (2): 154-171    DOI: 10.11867/j.issn.1001-8166.2021.021
综述与评述     
重矿物分析物源示踪方法研究进展
许苗苗1(),魏晓椿1(),杨蓉1,王平2,程晓敢1
1.浙江大学地球科学学院,浙江 杭州 310007
2.南京师范大学地理科学学院,江苏 南京 210023
Research Progress of Provenance Tracing Method for Heavy Mineral Analysis
Miaomiao XU1(),Xiaochun WEI1(),Rong YANG1,Ping WANG2,Xiaogan CHENG1
1.School of Earth Sciences,Zhejiang University,Hangzhou 310007,China
2.Nanjing Normal University,School of Geography,Nanjing 210023,China
 全文: PDF(7257 KB)   RICH HTML
摘要:

传统的重矿物分析是碎屑沉积物物源示踪的基本方法,具有费用便宜、物源信息全面等优点,还可以为单矿物物源示踪提供重要的背景信息,具有无可替代的作用。近年来,该方法在基础理论和技术上取得了一系列新进展,但尚缺乏系统的总结。对重矿物分析的研究进展和发展趋势进行了梳理,主要包括如下几个方面:沉积物在搬运、沉积、成岩和暴露过程中,风化、水力分选、埋藏成岩等因素对重矿物的影响;重矿物组合数据获取的方法(采样、前处理、粒径选择以及计数等)和应注意的问题;如何进行重矿物数据分析、处理和应用,包括开展常用重矿物指标计算、偏差矫正和沉积物贡献量计算等;重矿物分析方法的发展趋势。认为机器自动矿物识别以及重矿物分析与单矿物分析相结合是重矿物分析物源示踪方法的发展方向。

关键词: 重矿物分析物源示踪水力分选重矿物指标自动矿物识别    
Abstract:

The traditional heavy mineral analysis is a fundamental and cheap provenance tracing method for clastic sediments. It provides comprehensive provenance information and irreplaceable background data for the single-mineral methods of provenance tracing. There are new progresses in basic theory and technology in recent years, but a systematic summary is still lacking. This paper summarizes the progress and development trend of heavy mineral analysis, which is shown in the following aspects: The impact of factors such as weathering, hydraulic sorting, diagenetic modification on heavy minerals during transport, deposition, diagenesis, and exposure; Data acquisition processes of heavy mineral analysis (sampling, pre-processing, selection of grain size fraction, counting) and issues that should be paid attention to; How to analyze, process and apply heavy mineral data, including calculating commonly used heavy mineral indexes and sediment budgets, and carrying out bias correction; The new progress and development trend of theory and technology in the heavy mineral analysis. It is believed that automatic mineral identification by machine and the combination of heavy mineral analysis method and single-mineral method are the development direction of provenance tracing based on heavy mineral analysis.

Key words: Heavy mineral analysis    Provenance tracing    Hydraulic sorting    Heavy mineral index    Automatic mineral identification
收稿日期: 2020-12-04 出版日期: 2021-04-19
ZTFLH:  P588.21  
基金资助: 国家自然科学基金青年科学基金项目“东帕米尔山前晚新生代沉积物源示踪及对公格尔伸展系统启动时间的约束”(41902204);自然资源部构造成矿成藏重点实验室开放基金项目(gzck201904)
通信作者: 魏晓椿     E-mail: xmm3816403@163.com;xcwnju@gmail.com
作者简介: 许苗苗(1995-),女,山东济宁人,硕士研究生,主要从事盆地分析研究. E-mail:xmm3816403@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许苗苗
魏晓椿
杨蓉
王平
程晓敢

引用本文:

许苗苗,魏晓椿,杨蓉,王平,程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.

Miaomiao XU,Xiaochun WEI,Rong YANG,Ping WANG,Xiaogan CHENG. Research Progress of Provenance Tracing Method for Heavy Mineral Analysis. Advances in Earth Science, 2021, 36(2): 154-171.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.021        http://www.adearth.ac.cn/CN/Y2021/V36/I2/154

图1  过去30年(1991—2020年)基于传统的重矿物分析和典型单矿物物源示踪的文献数量
图2  水力分选示意图(据参考文献[13,37]修改)(a)Cheng[38]的球形颗粒沉降力学模型;(b)水力等效原理控制下的不同矿物粒度关系;(c)颗粒选择性挟带示意图;(d)中性砂经水力分选,分出冲积矿和反冲积矿;Fv:黏性阻力; Ft:紊流阻力;FL:上升浮力;FD:拖曳力; α:转动角; Fg:水下颗粒重力;D和K:直径
源岩构造背景和位置沉积物重矿物特征
大洋岩石圈沉积盖层重矿物含量较少,稳定和超稳定矿物为主(含铬尖晶石)
上地壳辉石、阳起角闪石和丰富的绿帘石
下地壳单斜辉石为主的矿物组合,包含绿—棕色角闪石或紫苏辉石
地幔橄榄石(或蛇纹石)为主,斜方辉石次之,尖晶石少量
岩浆弧地壳火山弧普通辉石、紫苏辉石为主,橄榄石、普通角闪石次之
弧岩基普通角闪石为主,含绿帘石,单斜辉石、紫苏辉石、榍石、锆石少量
大陆地壳上地壳源岩为浅变质岩:绿帘石为主,超稳定矿物少量源岩为碎屑岩盖层:锆石、电气石和金红石为主;源岩为碳酸盐岩:不含重矿物;源岩为陆内火山:单斜辉石为主,局部有橄榄石、磷灰石、锆石、易变辉石、尖晶石等
中地壳岩石为花岗岩或角闪相变质岩:角闪石为主;源岩为角闪岩相副变质岩:以石榴子石、蓝晶石和 十字石组合为特征
下地壳以紫苏辉石、角闪石、石榴子石、单斜辉石、夕线石组合为特征
造山带变质推覆体大洋变质推覆体洋壳榴辉岩化变质岩:几乎由单斜辉石、石榴子石、金红石构成
榴辉岩退变质后源岩:绿帘石、角闪石为主,辉石、石榴子石少量
大陆变质推覆体榴辉岩相岩石经受退变质后的源岩:与退变质大洋榴辉岩类似,但石榴子石更多,蓝晶石更少;蓝片岩相岩石经受绿片岩相退变质后的源岩:绿帘石为主
造山带大洋、弧和大陆岩石均可卷入造山带,因此造山带的沉积物没有特定的重矿物组合
表1  不同构造背景下重矿物组合特征(据参考文献[13,73]编制)
指标涉及的有关组分指标定义
ATi磷灰石(Apatite)、电气石(Tourmaline)100×磷灰石/(磷灰石+电气石)
GZi石榴子石(Garnet)、锆石(Zircon)100×石榴子/(石榴子石+锆石)
RZiTiO2矿物(TiO2 group)、锆石(Zircon)100×TiO2矿物/(TiO2矿物+锆石)
RuZi金红石(Rutile)、锆石(Zircon)100×金红石/(金红石+锆石)
CZi铬尖晶石(Chrome spinel)、锆石(Zircon)100×铬尖晶石/(铬尖晶石+锆石)
MZi独居石(Monazite)、锆石(Zircon)100×独居石/(独居石+锆石)
ZTR锆石(Zircon)、电气石(Tourmaline)、金红石(Rutile)100×(锆石+电气石+金红石)/透明重矿物
POS辉石(Pyroxenes)、橄榄石(Olivine)、尖晶石(Spinel)100×(辉石+橄榄石+尖晶石)/透明重矿物
LgM绿帘石、葡萄石、绿纤石、纤锰柱石、硬绿泥石100×(绿帘石+葡萄石+绿纤石+纤锰柱石+硬绿泥石)/透明重矿物
HgM十字石、红柱石、蓝晶石、夕线石100×(十字石+红柱石+蓝晶石+夕线石)/透明重矿物
%Op所有重矿物100×不透明重矿物/总的重矿物
%Ultradense所有重矿物100×超重重矿物/总的重矿物
%ZR锆石(Zircon)、金红石(Rutile)、电气石(Tourmaline)100×(锆石+金红石)/(锆石+金红石+电气石)
HMC所有碎屑100×总重矿物(透明+不透明+混浊颗粒)/总碎屑
tHMC所有碎屑100×透明重矿物/总碎屑
SRD所有碎屑所有碎屑颗粒的加权平均密度,见正文中公式(5)或(6)
Hb普通角闪石100×普通角闪石/透明重矿物
&A所有透明重矿物100×(蓝闪石+透闪石+阳起石)/透明重矿物
CPX所有透明重矿物100×(普通辉石+透辉石)/透明重矿物
OPX所有透明重矿物100×(顽辉石+紫苏辉石)/透明重矿物
MMI十字石、蓝晶石、夕线石、硬绿泥石100×(1/3十字石+2/3蓝晶石+夕线石)/(硬绿泥石+十字石+蓝晶石+夕线石)
表2  常用的重矿物物源示踪指标(据参考文献[25,48,82~85]编制)
图3  SRD矫正效果示例(据参考文献[68]修改)(a)对已知全样SRD的Goro沙滩冲积砂矿使用两步SRD矫正分别消除分析偏差和环境偏差;(b)Goro沙滩冲积砂矿(SRD为3.36)和Po三角洲沙滩沉积物(SRD为2.70±0.03)之间的差异经SRD矫正11步迭代后极大地减少
图4  TIMA对重矿物自动扫描获得种类识别、颗粒分解、成分统计和矿物粒径分布实例
1 WELTJE G J, EYNATTEN H VON. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1): 1-11.
2 LIU Baojun, ZENG Yongfu. Basis and working methods of lithofacies paleogeography[M]. Beijing:Beijing Publishing House,1985.
2 刘宝珺, 曾永孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1985.
3 ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42 (11): 1 851-1 870.
3 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42 (11): 1 851-1 870.
4 YANG Jianghai, MA Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science,2017, 42(11): 1 910-1 921.
4 杨江海, 马严. 源-汇沉积过程的深时古气候意义[J]. 地球科学, 2017, 42(11): 1 910-1 921.
5 LIN Changsong, XIA Qinglong, SHI Hesheng, et al. Geomorphological evolution,source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.
5 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20.
6 WANG Chengshan, LI Xianghui. Sedimentary basin:From principles to analyses[M]. Beijing:Higher Education Press, 2003.
6 王成善, 李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教育出版社, 2003.
7 MA Shouxian, MENG Qingren, Qu Yongqiang. Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30(2): 597-608.
7 马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学报, 2014, 30(2): 597-608.
8 XU Jie, JIANG Zaixing. Provenance analysis of clastic rocks: Current research status and prospect: 03[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.
8 徐杰, 姜在兴. 碎屑岩物源研究进展与展望: 03[J]. 古地理学报, 2019, 21(3): 379-396.
9 YANG Renchao, LI Jinbu, FAN Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks: 01[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107.
9 杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势: 01[J]. 沉积学报, 2013, 31(1): 99-107.
10 ZHAO Hongge, LIU Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.
10 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3): 409-415.
11 EYNATTEN H VON, DUNKL I. Assessing the sediment factory: The role of single grain analysis[J]. Earth-Science Reviews, 2012, 115(1): 97-120.
12 MANGE M A, MAURER H. Heavy minerals in colour[M]. Netherlands: Springer Netherlands, 1992.
13 GARZANTI E, ANDò S. Heavy minerals for junior woodchucks[J]. Minerals, 2019, 9(3): 148.
14 MANGE M A, WRIGHT D T. Heavy minerals in use[M]. Amsterdam, Boston: Elsevier, 2007.
15 Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences. Manual of sand mineral identification[M]. Beijing: Geological Publishing House,1977.
15 中国地质科学院地矿所. 砂矿物鉴定手册[M]. 北京: 地质出版社, 1977.
16 THüRACH H. über das verkommen mikrospokischer zirkone und titanmineralien in des gesteinen.[J]. Verhandlungen der Physikalisch-Medizinischen Gesellschaft zu Würzburg, 1884, 18: 203-284.
17 GEHRELS G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149.
18 ZHANG Ling, WANG Ping, CHEN Xiyun, et al. Review in detrital Zircon U-Pb geochronology:Data acquisition,analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
18 张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
19 WANG Jiangang, HU Xiumian. Applications of geochemistry and geochronology of accessory minerals in sandstone to provenance analysis[J].Geological Review, 2008, 54(5):670-678.
19 王建刚, 胡修棉. 砂岩副矿物的物源区分析新进展[J]. 地质论评, 2008, 54(5): 670-678.
20 JIAN Xing, GUAN Ping, ZHANG Wei. Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science, 2012, 27(8): 828-846.
20 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
21 GUO Pei, LIU Chiyang, WANG Jianqiang, et al. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica , 2017, 35(1): 46-56.
21 郭佩, 刘池洋, 王建强, 等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35(1): 46-56.
22 MOECHER D P, SAMSON S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3): 252-266.
23 DICKINSON W R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis[J]. Earth and Planetary Science Letters, 2008, 275(1): 80-92.
24 GARZANTI E. From static to dynamic provenance analysis—Sedimentary petrology upgraded[J]. Sedimentary Geology, 2016, 336: 3-13.
25 MORTON A C, HALLSWORTH C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3): 241-256.
26 SCHULZ B, SANDMANN D, GILBRICHT S. SEM—Based automated mineralogy and its application in geo- and material sciences: 11[J]. Minerals, 2020, 10(11): 1 004.
27 MORTON A C. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation[J]. Mineralogical Association of Canada Short Course Series, 2012, 42: 133-165.
28 HE Zhonghua, LIU Zhaojun, ZHANG Feng. Latest progress of heavy mineral research in the basin analysis [J]. Bulletin of Geological Science and Technology, 2001, 20(4): 29-32.
28 和钟铧, 刘招君, 张峰. 重矿物在盆地分析中的应用研究进展 [J]. 地质科技情报, 2001, 20(4): 29-32.
29 YUE Yan. Introduction of the provenance analysis of heavy mineral:12[J]. Journal of Library and Information Science, 2010, 20(12): 138-139,146.
29 岳艳. 浅谈重矿物物源分析方法: 12[J]. 科技情报开发与经济, 2010, 20(12): 138-139,146.
30 DUNKL I, EYNATTEN H VON, Andò S, et al. Comparability of heavy mineral data-the first interlaboratory round robin test[J]. Earth-Science Reviews, 2020, 211: 103210.
31 MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1): 3-29.
32 BURLEY S D, KANTOROWICZ J D, WAUGH B. Clastic diagenesis[J]. Geological Society, London, Special Publications, 1985, 18(1): 189-226.
33 JOHNSSON M J, STALLARD R F, LUNDBERG N. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia[J]. GSA Bulletin, 1991, 103(12): 1 622-1 647.
34 MILLIKEN K L. Chapter 8 provenance and diagenesis of heavy minerals, cenozoic units of the Northwestern Gulf of Mexico sedimentary basin[M]// Mange M A, Wright D T. Developments in Sedimentology. Elsevier, 2007: 247-261.
35 RAHMANI R A. Grain surface etching features of some heavy minerals[J]. Journal of Sedimentary Research, 1973, 43(3): 882-888.
36 TURNER G, MORTON A C. Chapter 14 the effects of burial diagenesis on detrital heavy mineral grain surface textures[M]//MANGE M A, WRIGHT D T. Developments in sedimentology. Elsevier, 2007: 393-412.
37 KOMAR P D, LI Z. Applications of grain-pivoting and sliding analyses to selective entrapment of gravel and to flow-competence evaluations[J]. Sedimentology, 1988, 35(4): 681-695.
38 CHENG Niansheng. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2): 149-152.
39 RUBEY W W. The size distribution of heavy minerals within a water-laid sandstone[J]. Journal of Sedimentary Research, 1933, 3(1): 3-29.
40 HAND B M. Differentiation of beach and dune sands, using settling velocities of light and heavy minerals[J]. Journal of Sedimentary Research, 1967, 37(2): 514-520.
41 KOMAR P D, WANG C. Processes of selective grain transport and the formation of placers on beaches[J]. The Journal of Geology, 1984, 92(6): 637-655.
42 SLINGERLAND R L. The effects of entrainment on the hydraulic equivalence relationships of light and heavy minerals in sands[J]. Journal of Sedimentary Research, 1977, 47(2): 753-770.
43 REID L, FROSTICK L E. Beach orientation, bar morphology and the concentration of metalliferous placer deposits: A case study, Lake Turkana, N Kenya[J]. Journal of the Geological Society, 1985, 142(5): 837-848.
44 GARZANTI E, ANDò S, VEZZOLI G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J]. Earth and Planetary Science Letters, 2008, 273(1): 138-151.
45 FLORES R M, SHIDELER G L. Factors controlling heavy-mineral variations on the south texas outer continental shelf, Gulf of Mexico[J]. Journal of Sedimentary Research, 1978, 48(1): 269-280.
46 DOYLE L J, CARDER K L, STEWARD R G. The hydraulic equivalence of mica[J]. Journal of Sedimentary Research, 1983, 53(2): 643-648.
47 GARZANTI E, ANDò S, VEZZOLI G, et al. Petrology of the Namib Sand Sea: Long-distance transport and compositional variability in the wind-displaced orange delta[J]. Earth-Science Reviews, 2012, 112(3): 173-189.
48 Morton A, Mundy D, Bingham G. High-frequency fluctuations in heavy mineral assemblages from Upper Jurassic sandstones of the Piper Formation, UK North Sea: Relationships with sea-level change and floodplain residence[J]. Journal of African Economies, 2012, 23(1):175-190.
49 MIAO Xiaolong, DU Yan. Discussion with Hu:Significant influence of mixing action to clastic particles during the process of flowing transportation and sedimentation[J]. Journal of Palaeogeography, 2017, 19(4): 648-652.
49 苗小龙, 杜燕. 与胡修棉的讨论:水流搬运与沉积过程中掺和作用对碎屑颗粒的重要影响[J]. 古地理学报, 2017, 19(4): 648-652.
50 HU Xiumian. A misunderstanding in provenance analysis:Sand changes of mineral,roundness,and size in flowing-wate transportation[J]. Journal of Palaeogeography , 2017, 19(1): 175-184.
50 胡修棉. 物源分析的一个误区:砂粒在河流搬运过程中的变化[J]. 古地理学报, 2017, 19 (1): 175-184.
51 GARZANTI E, RESENTINI A, ANDò S, et al. Physical controls on sand composition and relative durability of detrital minerals during ultra‐long distance littoral and aeolian transport (Namibia and southern Angola)[J]. Sedimentology, 2015, 62(4): 971-996.
52 RUSSELL R D. Mineral composition of Mississippi River sands[J]. GSA Bulletin, 1937, 48(9): 1 307-1 348.
53 MORTON A, HALLSWORTH C, KUNKA J, et al.Heavy-mineral stratigraphy of the clair group (Devonian-Carboniferous) in the clair field, West of Shetland, U.K.[M]//RATCLIFFE K T, ZAITLIN B A. Application of modern stratigraphic techniques: Theory and case histories. SEPM Society for Sedimentary Geology, 2010.
54 BLATT H, SUTHERLAND B. Intrastratal solution and non-opaque heavy minerals in shales[J]. Journal of Sedimentary Research, 1969, 39(2): 591-600.
55 MORTON A C, HALLSWORTH C. Chapter 7 stability of detrital heavy minerals during burial diagenesis[M]//MANGE M A, WRIGHT D T. Developments in sedimentology. Elsevier, 2007: 215-245.
56 YURKOVA R M. Comparison of post-sedimentary alterations of oil-, gas- and water-bearing rocks[J]. Sedimentology, 1970, 15(1/2): 53-68.
57 MILLIKEN K L, MACK L E. Subsurface dissolution of heavy minerals, frio formation sandstones of the Ancestral Rio Grande Province, South Texas[J]. Sedimentary Geology, 1990, 68(3): 187-199.
58 MORTON A C. Stability of detrital heavy minerals in tertiary sandstones from the North Sea Basin[J]. Clay Minerals, 1984, 19(3): 287-308.
59 MORTON A C. Dissolution of Apatite in North Sea Jurassic Sandstones: Implications for the generation of secondary porosity[J]. Clay Minerals, 1986, 21(4): 711-733.
60 SMALE D, MORTON A C. Heavy mineral suites of core samples from the McKee Formation (Eocene—Lower Oligocene), Taranaki: Implications for provenance and diagenesis[J]. New Zealand Journal of Geology and Geophysics, 1987, 30(3): 299-306.
61 TSUTSUMI Y, C-S LEE, SHEN J J, et al. Stability and dissolution of heavy minerals in the neogene-pleistocene sandstones from Western Foothills, Taiwan(natural history researches of the island arcs in the Western Pacific I. Taiwan and the Philippines)[J]. Memoirs of the National Science Museum, 2006, 44: 195-204.
62 MORTON A C. Heavy minerals in provenance studies[M]// Zuffa G G. Provenance of Arenites. Dordrecht: Springer Netherlands, 1985: 249-277.
63 CARVER R E. Heavy-mineral separation[M]//Procedures in sedimentary petrology. New York: Wiley-Interscience, 1931: 653.
64 BATEMAN R M, CATT J A. Chapter 5 Provenance and Palaeoenvironmental Interpretation of Superficial Deposits, with Particular Reference to Post-Depositional Modification of Heavy Mineral Assemblages[M]// MANGE M A, WRIGHT D T. Developments in sedimentology. Elsevier, 2007: 151-188.
65 TJEERD H A. Recent marine sediments of Gulf of California [C]. American Association of Petroleum Geologists, 1964.
66 GALEHOUSE J S. Provenance and Paleocurrents of the Paso Robles Formation, California[J]. GSA Bulletin, 1967, 78(8): 951-978.
67 RICE R M, GORSLINE D S, OSBORNE R H. Relationships between sand input from rivers and the composition of sands from the beaches of Southern California[J]. Sedimentology, 1976, 23(5): 689-703.
68 GARZANTI E, ANDò S, VEZZOLI G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3): 422-432.
69 SCHNITZER W A. Zur problematik der schwermineralanalyse am beispiel triassischer sedimentgesteine[J]. Geologische Rundschau, 1983, 72(1): 67-75.
70 HE Shaowu. Mineral identification manual[M]. Changchun: Changchun College of Geology, 1980.
70 何绍武. 矿物鉴定手册[M]. 长春: 长春地质学院, 1980.
71 GLAGOLEV A A. On geometrical methods of quantitative mineralogical analysis of rocks[M]. Moscow: Transactions of the Institute Economic Mineralogy, 1933.
72 CHAYES F. The theory of thin-section analysis[J]. The Journal of Geology, 1954, 62(1): 92-101.
73 GARZANTI E, ANDò S. Chapter 20 heavy mineral concentration in modern sands: Implications for provenance interpretation[M]//MANGE M A, WRIGHT D T. Heavy minerals in use. Radarweg: Elsevier, 2007: 517-545.
74 LI Linlin, GUO Zhaojie, GUAN Shuwei, et al. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin[J]. Science China: Earth Sciences, 2015, 45(6): 780-798,1-6.
74 李林林, 郭召杰, 管树巍, 等. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化[J]. 中国科学:地球科学, 2015, 45(6): 780-798,1-6.
75 SUN Xiaoxia, LI Yong, QIU Dongzhou, et al. The heavy minerals and provenances of the Neogene Guantao Formation in the Huanghua depression:03[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(3): 61-66.
75 孙小霞, 李勇, 丘东洲, 等. 黄骅坳陷新近系馆陶组重矿物特征及物源区意义: 03[J]. 沉积与特提斯地质, 2006, 26(3): 61-66.
76 DERKACHEV A N, NIKOLAEVA N A. Chapter 17 multivariate analysis of heavy mineral assemblages of sediments from the marginal seas of the Western Pacific[M]// Mange M A, Wright D T. Developments in Sedimentology. Elsevier, 2007: 439-464.
77 IMBRIE J, ANDEL T H VAN. Vector analysis of heavy-mineral data[J]. GSA Bulletin, 1964, 75 (11): 1 131-1 156.
78 WANG Kunshan, SHI Xuefa, LIN Zhenhong. Assemblages, provinces and provenances of heavy minerals on the Shelf of the Southern Yellow Sea and Northern East China Sea: 01[J]. Advances in Marine Science, 2003, 21(1): 31-40.
78 王昆山, 石学法, 林振宏. 南黄海和东海北部陆架重矿物组合分区及来源: 01[J]. 海洋科学进展, 2003, 21(1): 31-40.
79 WU Fadong, LU Yongchao, RUAN Xiaoyan, et al. Application of heavy minerals cluster analysis to study of clastic sources and stratigraphic correlation [J].Geoscience, 1996,10(3): 106-112.
79 武法东, 陆永潮, 阮小燕,等. 重矿物聚类分析在物源分析及地层对比中的应用——以东海陆架盆地西湖凹陷平湖地区为例 [J]. 现代地质, 1996, 10(3): 106-112.
80 PIRKLE F L, PIRKLE E C, PIRKLE W A, et al. Evaluation through correlation and principal component analyses of a delta origin for the Hawthorne and Citronelle Sediments of Peninsular Florida[J]. The Journal of Geology, 1985, 93(4): 493-501.
81 VERMEESCH P, RESENTINI A, GARZANTI E. An R package for statistical provenance analysis[J]. Sedimentary Geology, 2016, 336 (): 14-25.
82 HUBERT J F. A Zircon-Tourmaline-Rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Research, 1962, 32(3): 440-450.
83 GARZANTI E, VEZZOLI G, LOMBARDO B, et al. Collision‐Orogen Provenance (Western Alps): Detrital signatures and unroofing trends[J]. The Journal of Geology, 2004, 112(2): 145-164.
84 GARZANTI E, ANDò S, VEZZOLI G. The continental crust as a source of sand (Southern Alps Cross Section, Northern Italy)[J]. The Journal of Geology, 2006, 114(5): 533-554.
85 GARZANTI E, DOGLIONI C, VEZZOLI G, et al. Orogenic belts and orogenic sediment provenance[J]. The Journal of Geology, 2007, 115(3): 315-334.
86 MORTON A, MCGILL P. Correlation of hydrocarbon reservoir sandstones using heavy mineral provenance signatures: Examples from the North Sea and adjacent areas: 12[J]. Minerals, 2018, 8(12): 564.
87 LEWIN A, MEINHOLD G, HINDERER M, et al. Heavy minerals as provenance indicator in glaciogenic successions: An example from the palaeozoic of ethiopia[J]. Journal of African Earth Sciences, 2020, 165: 103813.
88 BUSH M A, SAYLOR J E, HORTON B K, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8(1): 58-82.
89 MORTON A C, WHITHAM A G, FANNING C M. Provenance of late cretaceous to paleocene submarine fan sandstones in the norwegian sea: Integration of heavy mineral, mineral chemical and Zircon Age Data[J]. Sedimentary Geology, 2005, 182(1): 3-28.
90 NAUTON‐FOURTEU M, TYRRELL S, MORTON A. Heavy mineral variations in mid-carboniferous deltaic sandstones: Records of a pre-depositional sediment history?[J]. The Depositional Record, 2021, 7(1): 52-63.
91 HANSLEY P L. Petrologic and experimental evidence for the etching of garnets by organic acids in the Upper Jurassic Morrison Formation, Northwestern New Mexico[J]. Journal of Sedimentary Research, 1987, 57(4): 666-681.
92 MORTON A C. Influences of provenance and diagenesis on detrital garnet suites in the paleocene forties sandstone, Central North Sea[J]. Journal of Sedimentary Research, 1987, 57(6): 1 027-1 032.
93 RITTENHOUSE G. Transportation and deposition of heavy mineral[J]. GSA Bulletin, 1943, 54(12): 1 725-1 780.
94 HATTUM M W A VAN, HALL R, PICKARD A L, et al. Southeast Asian sediments not from Asia: Provenance and geochronology of North Borneo Sandstones[J]. Geology, 2006, 34(7): 589-592.
95 GARZANTI E, ANDò S. Chapter 20 heavy mineral concentration in modern sands: Implications for provenance interpretation[M]// MANGE M A, WRIGHT D T. Heavy minerals in use. Amsterdam; Boston: Elsevier, 2007: 517-545.
96 GARZANTI E, VEZZOLI G, ANDò S, et al. Petrology of Rifted‐Margin Sand (Red Sea and Gulf of Aden, Yemen): 3[J]. The Journal of Geology, 2001, 109(3): 277-297.
97 GARZANTI E, ANDò S, VEZZOLI G, et al. From rifted margins to foreland basins: Investigating provenance and sediment dispersal across Desert Arabia (Oman, U.A.E.): 4[J]. Journal of Sedimentary Research, 2003, 73 (4): 572-588.
98 GARZANTI E, VEZZOLI G, ANDò S, et al. Sand petrology and focused Erosion in collision orogens: The Brahmaputra Case: 1[J]. Earth and Planetary Science Letters, 2004, 220(1): 157-174.
99 GARZANTI E, VEZZOLI G. A classification of metamorphic grains in sands based on their composition and grade[J]. Journal of Sedimentary Research, 2003, 73(5): 830-837.
100 GARZANTI E, ANDò S. Chapter 29 plate tectonics and heavy mineral suites of modern sands[M]// MANGE M A, WRIGHT D T. Developments in Sedimentology. Elsevier, 2007: 741-763.
101 WELTJE G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem: 4[J]. Mathematical Geology, 1997, 29(4): 503-549.
102 GARZANTI E, VEZZOLI G, ANDò S, et al. Petrology of Indus River sands: A key to interpret erosion history of the Western Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 2005, 229(3): 287-302.
103 GARZANTI E, ANDò S, VEZZOLI G, et al. Petrology of Nile River Sands (Ethiopia and Sudan): Sediment budgets and erosion patterns: 3[J]. Earth and Planetary Science Letters, 2006, 252(3): 327-341.
104 VEZZOLI G, GARZANTI E, MONGUZZI S. Erosion in the Western Alps (Dora Baltea Basin): 1. Quantifying sediment provenance: 1[J]. Sedimentary Geology, 2004, 171(1): 227-246.
105 LIU Teng, CHEN Gang, XU Xiaogang, et al. Methods and development trend of provenance analysis[J]. Northwestern Geology, 2016, 49(4): 121-128.
105 刘腾, 陈刚, 徐小刚, 等. 物源分析方法及其发展趋势[J]. 西北地质, 2016, 49(4): 121-128.
106 ALIGHOLI S, LASHKARIPOUR G R, KHAJAVI R, et al. Automatic mineral identification using color tracking[J]. Pattern Recognition, 2017, 65: 164-174.
107 ROSS B J, FUETEN F, YASHKIr D Y. Automatic mineral identification using genetic programming[J]. Machine Vision and Applications, 2001, 13(2): 61-69.
108 THOMPSON S, FUETEN F, BOCKUS D. Mineral identification using artificial neural networks and the rotating polarizer stage[J]. Computers & Geosciences, 2001, 27(9): 1 081-1 089.
109 ANDò S, GARZANTI E. Raman spectroscopy in heavy-mineral studies[J]. Geological Society, London, Special Publications, 2014, 386(1): 395-412.
110 ISHIKAWA S T, GULICK V C. An automated mineral classifier using raman spectra[J]. Computers & Geosciences, 2013, 54: 259-268.
111 HADDAD J EL, DE LIMA FILHO E S, VANIER F, et al. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy[J]. Minerals Engineering, 2019, 134: 281-290.
112 RIFAI K, MICHAUD PARADIS M-C, SWIERCZEK Z, et al. Emergences of new technology for ultrafast automated mineral phase identification and quantitative analysis using the CORIOSITY Laser-Induced Breakdown Spectroscopy (LIBS) system: 10[J]. Minerals, 2020, 10(10): 918.
113 FREI D, KNUDSEN C, MCLIMANS R K, et al. Fully automated analysis of chemical and physical properties of individual mineral species in heavy mineral sands by computer controlled scanning electron microscopy (CCSEM)[C]//2005 Heavy Minerals Conference, HMC2005, October16, 2005 - October 19, 2005. Jacksonville, FL, United states: Society for Mining, Metallurgy and Exploration, 2005: 103-108.
114 GRAHAM S, BROUGH C, CROPP A. An introduction to ZEISS mineralogic mining and the correlation of light microscopy with automated mineralogy: A case study using BMS and PGM analysis of samples from a PGE-bearing chromitite prospect[C]. Precious Metals, 2015.
115 GU Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser: 1[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2 (1): 33-41.
116 HRSTKA T, GOTTLIEB P, SKALA R, et al. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47-63.
117 PIRRIE D, BUTCHER A R, POWER M R, et al. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN): Potential applications in forensic geoscience[J]. Geological Society, London, Special Publications, 2004, 232(1): 123-136.
118 JIA Muxin, ZHOU Junwu, YING Ping, et al. Development and application of Bgrimm Process Mineralogy Analyzing system (BPMA)[J]. Nonferrous Metals Engineering & Research, 2017, 38(4): 1-12,16.
118 贾木欣, 周俊武, 应平, 等. 工艺矿物学自动测试系统BPMA的研制及应用[J]. 有色冶金设计与研究, 2017, 38(4): 1-12,16.
119 SANDMANN D. Method development in automated mineralogy[D]. Freiberg: verleihende / prüfende Institution TU Bergakademie Freiberg, 2015.
120 KENIS P, SKURZY?SKI J, JARY Z, et al. A new methodological approach (QEMSCAN?) in the mineralogical study of Polish Loess: Guidelines for further research[J]. Open Geosciences, 2020, 12(1): 342-353.
121 NIE Junsheng, PENG Wenbin. Automated SEM-EDS heavy mineral analysis reveals No Provenance Shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 2014, 13: 71-75.
122 GUO Ronghua, HU Xiumian, GARZANTI E, et al. How faithfully do the geochronological and geochemical signatures of Detrital Zircon, Titanite, Rutile and Monazite record magmatic and metamorphic events?A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082.
123 JIAN Xing, GUAN Ping, ZHANG Daowei, et al. Provenance of tertiary sandstone in the Northern Qaidam Basin, Northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 2013, 290: 109-125.
124 ZHENG Dewen, WANG Fei, ZHANG Peizhen, et al. Apatite U-Th/He dating method—A low temperature thermochronometer[J]. Seismology and Geology, 2000, 22(4): 427-435.
124 郑德文, 王非, 张培震, 等. 磷灰石U-Th/He法—— 一种低温热年代计[J]. 地震地质, 2000, 22(4): 427-435.
125 CAO Kai, WANG Guocan, BERNET M, et al. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen[J]. Earth and Planetary Science Letters, 2015, 432: 391-403.
126 DENG Bin, ZENG Lu, ZHOU Qing, et al. A review of detrital apatite single-grain LA-ICPMS multi-dating[J]. Bulletin of Geological Science and Technology, 2017, 36(1): 77-86.
126 邓宾, 曾璐, 周庆, 等. 碎屑岩磷灰石单矿物多法定年进展与应用[J]. 地质科技情报, 2017, 36(1): 77-86.
127 SUN Xilin, LI Changjiang, KUIPER K F, et al. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 2018, 30: 636-649.
128 CLIFT P D, HODGES K V, HESLOP D, et al. Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity[J]. Nature Geoscience, 2008, 1(12): 875-880.
129 NIE Junsheng, STEVENS T, RITTNER M. Loess Plateau storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment: 1[J]. Nature Communications, 2015, 6(1): 8 511.
130 RITTNER M, VERMEESCH P, CARTER A, et al. The provenance of Taklamakan desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
[1] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.