[1]Xu Y, McCammon C, Poe B. The effect of alumina on the electrical conductivity of silicate perovskite[J]. Science, 1998, 282: 922-924.
[2]Zhang B, Katsura T, Shatskiy A, et al. Electrical conductivity of FeTiO3 ilmenite at high temperature and high pressure[J]. Physical Review B, 2006, 73: 134104.
[3]Poe B, Romano C, Nestola F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa[J]. Physics of the Earth and Planetary Interiors, 2010, 181: 103-111.
[4]Wu X, Zhang B, Xu J, et al. Electrical conductivity measurements of periclase under high pressure and high temperature[J]. Physica B, 2010, 405: 53-56.
[5]Yang X, Keppler H, McCammon C, et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene[J]. Journal of Geophysical Research, 2011, 116: B04208.
[6]Huang Xiaogang, Huang Xiaoge, Bai Wuming. Progress of high temperature and high pressure experimental study on the electrical conductivity of the minerals and rocks[J]. Progress in Geophysics, 2010, 25: 1 247-1 258.
[7]Yoshino T. Laboratory electrical conductivity measurement of mantle minerals[J]. Surveys in Geophysics, 2010, 31: 163-206.
[8]Nover G. Electrical properties of crustal and mantle rocks—A review of laboratory measurements and their explanation[J]. Surveys in Geophysics, 2005, 26: 593-651.
[9]Duba A, Constable S. The electrical conductivity of Lherzolite[J]. Journal of Geophysical Research, 1993, 98: 11 885-11 899.
[10]Dai L, Li H, Liu C, et al. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities[J]. Acta Geologica Sinica- English Edition, 2005, 79: 803-809.
[11]Dai L, Li H, Liu C, et al. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities[J]. Progress in Natural Science, 2006, 16: 387-393.
[12]Li Peng, Zhou Wen’ge, Gong Chaoying, et al. Electrical conductivity of two-pyroxene granulite under high pressure in northern margin of North China craton[J]. Chinese Journal of Geophysics, 2010, 53: 2 386-2 395.
[13]Maumus J, Bagdassarov N, Schmeling H. Electrical conductivity and partial melting of mafic rocks under pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69: 4 703-4 718.
[14]Bagdassarov N, Maumus J, Poe B, et al. Pressure dependence of Tg in silicate glasses from electrical impedance measurements[J]. Physics and Chemistry of Glasses, 2004, 45: 197-214.
[15]Huang X, Xu Y, Karato S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Nature, 2005, 434: 746-749.
[16]Shimojuku A, Yoshino T, Yamazaki D, et al. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions[J]. Physics of the Earth and Planetary Interiors, 2012, 198/199:1-8.
[17]Gaillard F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure[J]. Earth and Planetary Science Letters, 2004, 218: 215-228.
[18]Pommier A, Gaillard F, Pichavant M, et al. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure[J]. Journal of Geophysical Research, 2008, 113: B05205.
[19]Karato S. The role of hydrogen in the electrical conductivity of the upper mantle[J]. Nature, 1990, 347: 272-273.
[20]Wang D, Mookherjee M, Xu Y, et al. The effect of water on the electrical conductivity of olivine[J]. Nature, 2006, 443: 977-980.
[21]Huang Xiaoge, Bai Wuming, Xu Yousheng, et al. Influence of hydrogen on electrical conductivity of wadsleyite and ringwoodite with its geodynamics implications[J]. Acta Petrologica Sinica, 2005, 21: 1 743-1 748.
[22]Yoshino T, Matsuzaki T, Shatskiy A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J]. Earth and Planetary Science Letters, 2009, 288: 291-300.
[23]Huang X, Xu Y, Karato S. The effects of hydrogen on electrical conductivity in wadsleyite and ringwoodite: Implications for hydrogen content in the mantle transition zone[J]. Eos, Transactions American Geophysical Union,2004,85(Suppl.):47.
[24]Huang X, Xu Y, Karato S. Earth science: A wet mantle conductor? (reply)[J]. Nature, 2006, 439: E3-E4.
[25]Dai L, Karato S. Electrical conductivity of wadsleyite at high temperatures and high pressures[J]. Earth and Planetary Science Letters, 2009, 287: 277-283.
[26]Manthilake M, Matsuzaki T, Yoshino T, et al. Electrical conductivity of wadsleyite as a function of temperature and water content[J]. Physics of the Earth and Planetary Interiors, 2009, 174: 10-18.
[27]Zhu Maoxu, Xie Hongsen, Guo Jie, et al. Electrical conductivity measurement of serpentineat high tempera-tureandpressure[J]. Chinese Science Bulletin, 1999, 20: 1 903-1 907.
[28]Yoshino T, Shimojuku A, Shan S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs[J]. Journal of Geophysical Research, 2012, 117: B08205.
[29]Karato S. Physics and Chemistry of the Deep Earth[M]. New Jersey: Wiley-Blackwell, 2013.
[30]Hirsch L, Shankland T, Duba A. Electrical conduction and polaron mobility in Fe-bearing olivine[J]. Geophysical Journal International, 1993, 114: 36-44.
[31]Yoshino T, Katsura T. Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone[J]. Physics of the Earth and Planetary Interiors, 2009, 174: 3-9.
[32]Li H, Xie H, Guo J, et al. In situ control of oxygen fugacity at high temperature and high pressure[J]. Journal of Geophysical Research, 1999, 104: 29 439-29 451.
[33]Dai L, Li H, Deng H, et al. In-situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure[J]. Journal of Physics and Chemistry of Solids, 2008, 69: 101-110.
[34]Dai L, Li H, Hu H, et al. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions[J]. Journal of Geophysical Research, 2008, 113: B12211.
[35]Yoshino T, Katsura T. Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite[J]. Earth and Planetary Science Letters, 2012, 337/338: 56-67.
[36]Dai L, Li H, Hu H, et al. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 2012, 163: 689-700.
[37]Shankland T, Waff H. Partial melting and electrical conductivity anomalies in the upper mantle[J]. Journal of Geophysical Research, 1977, 82: 5 409-5 417.
[38]Liu Jianglin, Bai Wuming, Kong Xiangru, et al. Electrical conductivity of granite,basalt and pyroxene peridotite under high temperature high pressure conditions[J]. Chinese Journal of Geophysics, 2001, 44:528-533.
[39]Presnall C, Simmons L, Porath H. Changes in electrical conductivity of a synthetic basalt during melting[J]. Journal of Geophysical Research, 1972, 77:5 665-5 672.
[40]Yoshino T, McIsaac E, Laumonier M, et al. Electrical conductivity of partial molten carbonate peridotite[J]. Physics of the Earth and Planetary Interiors, 2012, 194:1-9.
[41]Ni H, Keppler H, Manthilake M, et al. Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures[J]. Contributions to Mineralogy and Petrology, 2011, 162: 501-513.
[42]Hu H, Li H, Dai L, et al. Electrical conductivity of albite at high temperatures and high pressures[J]. American Mineralogist, 2011, 96: 1 821-1 827.
[43]Jones A, Palmer D, Islam M, et al. Alkali ion migration in albite and K-feldspar[J]. Physics and Chemistry of Minerals, 2004, 31: 313-320.
[44]Bolfan-Casanova N, Keppler H, Rubie D. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle[J]. Earth and Planetary Science Letters, 2000, 182: 209-221.
[45]Xu Y, Poe B, Shankland T, et al. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions[J]. Science, 1998, 280: 1 415-1 418.
[46]Yoshino T, Manthilake G, Matsuzaki T, et al. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite[J]. Nature, 2008, 451: 326-329.
[47]Yoshino T, Matsuzaki T, Yamashita S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[J]. Nature, 2006, 443: 973-976.
[48]Goddat A, Peyronneau J, Poirier J. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle[J]. Physics and Chemistry of Minerals, 1999, 27: 81-87.
[49]Xu Yousheng. A review on the electrical conductivity of mantle minerals and rocks[J]. Earth Science Frontiers, 2000, 7: 229-237. [徐有生. 地幔矿物岩石的电导率研究进展[J]. 地学前缘, 2000, 7: 229-237.]
[50]Dobson D, Richmond N, Brodholt J. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1-xO[J]. Science, 1997, 275: 1 779-1 781.
[51]Dobson D, Brodholt J. The electrical conductivity of the lower mantle phase magnesiowüstite at high temperatures and pressures[J]. Journal of Geophysical Research, 2000, 105: 531-538.
[52]Zhou W, Fan D, Liu Y, et al. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ℃: Comparison with field observations[J]. Geophysical Journal International, 2011, 187: 1 393-1 404.
[53]Noritomi K. Studies on the change of electrical conductivity with temperature of a few silicate minerals[J]. Science Reports of the Tohoku University (Series 5), 1954, 6: 119-126.
[54]Khitarov N, Slutskiy A. The effect of pressure on the melting temperatures of albite and basalt (based on electroconductivity measurements)[J]. Geochemistry International, 1965, 2: 1 034-1 042.
[55]Hu Haiying, Li Heping, Dai Lidong, et al. Experimental study on impedance spectra of microcline under high temperature and high pressure[J]. Journal of Synthetic Crystals, 2011, 40: 284-289.[胡海英, 李和平, 代立东, 等. 高温高压下微斜长石的阻抗谱实验研究[J]. 人工晶体学报, 2011, 40: 284-289.]
[56]Hu Haiying, Li Heping, Dai Lidong, et al. Experimental study on impedance spectra of albite at high temperatures and high pressures[J]. Chinese Journal of High Pressure Physics, 2012, 26: 382-388.[胡海英, 李和平, 代立东, 等. 高温高压下钠长石的阻抗谱实验研究[J]. 高压物理学报, 2012, 26: 382-388.]
[57]Yang X, Keppler H, McCammon C, et al. Electrical conductivity of orthopyroxene and plagioclase in the lower crust[J]. Contributions to Mineralogy and Petrology, 2012, 163: 33-48.
[58]Piwinskii A, Duba A. High temperature electrical conductivity of albite[J]. Geophysical Research Letters, 1974, 1: 209-211.
[59]Bagdassarov N, Delpine N. α-β inversion in quartz from low frequency electrical impedance spectroscopy[J]. Journal of Physics and Chemistry of Solids, 2004, 65: 1 517-1 526.
[60]Mayury F. Conductibilite electrique des tectosilicates. I. Methode etresultats experimentaux Cristallographie[J]. Bulletin de la Societe Francaise de Mineralogie et,1968, 91: 267-278.
[61]Calleja M, Dove M, Salje E. Anisotropic ionic transport in quartz: The effect of twin boundaries[J]. Journal of Physics: Condensed Matter, 2001, 13: 9 445-9 454.
[62]Jain H, Nowick A. Electrical conductivity of synthetic and natural quartz crystals[J]. Journal of Applied Physics, 1982, 53: 477-484.
[63]Lazzari S, Martini M, Paleari A, et al. DC and AC ionic conductivity in quartz: A new high temperature mechanism and a general assessment[J]. Nuclear Instruments and Methods in Physics Research , 1988, 32: 299-302.
[64]Wang D, Li H, Yi L, et al. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature[J]. Journal of Geophysical Research, 2010, 115,B09211,doi:10.1029/2009JB00695.
[65]Dai Lidong, Li Heping, Shan Shuangming, et al. Experimental study on electrical conductivity of Z-axis quartz crystal under high temperature and high pressure[J]. Journal of Synthetic Crystals, 2005, 34: 403-407.[代立东, 李和平, 单双明, 等. 高温高压下 Z 轴水晶的电导率实验研究[J]. 人工晶体学报, 2005, 34: 403-407.]
[66]Shan Shuangming, Li Heping, Dai Lidong, et al. Influence of ionic impurities on the electrical conductivity of synthetic quartz crystals at high temperature and high pressure[J]. Acta Mineralogica Sinica, 2009, 29: 109-112.[单双明, 李和平, 代立东, 等. 高温高压下杂质离子对水晶电导率影响的实验研究[J]. 矿物学报, 2009, 29: 109-112.]
[67]Wang D, Li H, Liu C, et al. Electrical conductivity of synthetic quartz crystals at high temperature and pressure from complex impedance measurements[J]. Chinese Physics Letters, 2002, 19: 1 211-1 213.
[68]Mirwald P, Massonne H. The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1 600 ℃ and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition[J]. Journal of Geophysical Research, 1980, 85: 6 983-6 990.
[69]Huebner J, Voigt D. Electrical conductivity of diopside: Evidence for oxygen vacancies[J]. American Mineralogist, 1988, 73: 1 235-1 254.
[70]Duba A, Boland J, Ringwood A. The electrical conductivity of pyroxene[J]. The Journal of Geology, 1973, 81: 727-735.
[71]Yang X, Heidelbach F. Grain size effect on the electrical conductivity of clinopyroxene[J]. Contributions to Mineralogy and Petrology, 2011, 163: 939-947.
[72]Xu Y, Shankland T. Electrical conductivity of orthopyroxene and its high pressure phases[J]. Geophysical Research Letters, 1999, 26: 2 645-2 648.
[73]Dai Lidong, Li Heping, Liu Congqiang, et al. The electrical conductivity of pyroxenite at high temperature and high pressure[J]. Acta Mineralogica Sinica, 2005, 25: 303-306.[代立东, 李和平, 刘丛强, 等. 高温高压下辉石岩的电导率实验研究[J]. 矿物学报, 2005, 25: 303-306.]
[74]Dai L, Karato S. Electrical conductivity of orthopyroxene:Implications for the water content of the asthenosphere[J]. Proceedings of the Japan Academy (Series B), 2009, 85: 466-475.
[75]Schlechter E, Stalder R, Behrens H. Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy[J]. Physics and Chemistry of Minerals, 2012, 39: 531-541.
[76]Voigt R, Seifert K, Will G. Die elektrische leitfa higkeit von pyroxenen der reihe MgSiO3-FeSiO3 bei 10 and 20 kbar unter definierten thermodynamischen Bedingungen[J]. Neues Jahrbuch fur Mineralogical Monatsch, 1979, 7: 308.
[77]Will G, Cemiè L, Hinze E, et al. Electrical conductivity measurements on olivines and pyroxenes under defined thermodynamic activities as a function of temperature and pressure[J]. Physics and Chemistry of Minerals, 1979, 4: 189-197.
[78]Wang Z, Ji S, Dresen G. Hydrogen-enhanced electrical conductivity of diopside crystals[J]. Geophysical Research Letters, 1999, 26: 799-802.
[79]Duba A, Heard H, Schock R. Electrical conductvity of orthopyroxene to 1 400 ℃ and the resulting selenotherm[C]∥Proceedings in the 7th Lunar Science Conference. New York, 1976: 3 173-3 181.
[80]Duba A, Dennison M, Irving A, et al. Electrical conductivity of aluminous orthopyroxene[J]. Lunar and Planetary Science, 1979, 10: 318-319.
[81]Wang D, Guo Y, Yu Y, et al. Electrical conductivity of amphibole-bearing rocks: Influence of dehydration[J]. Contributions to Mineralogy and Petrology, 2012, 164: 17-25.
[82]Bagdassarov N, Slutskii A. Phase transformations in calcite from electrical impedance measurements[J]. Phase Transitions, 2003, 76:1 015-1 028.
[83]Gaillard F, Malki M, Iacono-Marziano G, et al. Carbonatite melts and electrical conductivity in the asthenosphere[J]. Science, 2008,322:1 363-1 365.
[84]Huang Xiaogang, Huang Xiaoge, Bai Wuming. Study on the electrical conductivity of carbonated peridotite[J]. Chinese Journal of Geophysics, 2012, 55:3 144-3 151.
[85]Lee J, Shang J. Influencing factors on electrical conductivity of compacted kaolin clay[J]. Geomechanics and Engineering, 2001, 26:131-151.
[86]Revil A, Glover P. Nature of surface electrical conductivity sandstones, and clays[J]. Geophysical Research Letters, 1998, 25:691-694.
[87]Yang X. Origin of high electrical conductivity in the lowercontinental crust: A review[J]. Surveys in Geophysics, 2011, 32: 875-903.
[88]Sato H, Ida Y. Low frequency electrical impedance of partially molten gabbro: The effect of melt geometry on electrical properties[J]. Tectonophysics, 1984, 107: 105-134.
[89]Shankland T, Duba A, Mathez E, et al. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks[J]. Journal of Geophysical Research, 1997, 102: 14 741-14 750.
[90]Yang Xiaozhi, Xia Qunke, Yu Huimin, et al. The possible effect of hydrogen on the high electrical conductivity in the lower continental crust[J]. Advances in Earth Science,2006, 21:31-38. [杨晓志, 夏群科, 于慧敏, 等. 大陆下地壳高电导率的起源: 矿物中的结构水[J].地球科学进展, 2006, 21:31-38.]
[91]Jones A. Continental Lower Crust[M]. Amsterdam: Elsevier Science, 1992. |