地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 455 -466. doi: 10.11867/j.issn.1001-8166.2013.04.0455

综述与评述 上一篇    下一篇

地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例
蒋建军 1,2,代立东 1*,李和平 1,单双明 1,胡海英 1,惠科石 1,2   
  1. 1.中国科学院地球化学研究所地球内部物质高温高压实验室,贵州贵阳550002;2.中国科学院大学, 北京100049
  • 收稿日期:2012-10-15 修回日期:2013-03-04 出版日期:2013-04-10
  • 通讯作者: 代立东 (1977-),男,黑龙江巴彦人,副研究员,主要从事高压矿物物理实验研究. E-mail:dailidong@vip.gyig.ac.cn
  • 基金资助:

    中国科学院地球化学研究所“135”项目;国家自然科学基金项目“高温高压下不同氧逸度、水含量、成分和电子自旋态转变的方镁铁矿电导率的实验研究”(编号:41174079)资助.

Influential Factors and Conduction Mechanisms of the In-situ  Electrical Conductivity Measurements of Earth’s Interior Materials: A Case Study on Crustal Minerals

Jiang Jianjun 1,2, Dai Lidong 1, Li Heping 1, Shan Shuangming 1, Hu Haiying 1, Hui Keshi 1,2   

  1. 1.Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;2.University  of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-10-15 Revised:2013-03-04 Online:2013-04-10 Published:2013-04-10

高温高压下矿物岩石电导率的实验研究数据,不仅是人们了解地球内部物质组成及其演化过程的重要窗口,而且可以为野外大地电磁测深和地磁测深反演提供重要约束。重点介绍了温度、压力、水含量、铁含量、氧逸度、熔融等矿物岩石电导率的影响因素,深入阐述了存在于矿物岩石的4种主要导电机制,即离子、质子、小极化子和大极化子。回顾近年来地壳主要造岩矿物 (长石、石英和辉石) 的电导率实验研究取得的新成果,讨论了它们的导电机制和地球物理意义,并对其目前存在的问题及尚需进一步展开的工作进行了探讨。

In-situ experimental measurements of the electrical conductivities of minerals and rocks under high temperature and high pressure are the important approaches to explore the chemical composition and evolution process of materials in Earth’s interior, as well as to interpret the inversion results of the magnetotelluric and geomagnetic deep sounding data. In this paper, above all, some crucial influence factors on the electrical properties of mineral and rock such as temperature, pressure, water content, iron content, oxygen fugacity and melting are described in detail. Secondly, four typical kinds of electrical conduction mechanisms of minerals and rocks are demonstrated (e.g. ion, proton, small polaron and large polaron) at high temperature and high pressure. Finally, conduction mechanisms and geophysical applications are discussed based on the recent research results of electrical conductivities for feldspar, quartz and pyroxene on the major rockbearing minerals in the crust, and the present problems and future research work are  discussed.

中图分类号: 

[1]Xu Y, McCammon C, Poe B. The effect of alumina on the electrical conductivity of silicate perovskite[J]. Science, 1998, 282: 922-924.

[2]Zhang B, Katsura T, Shatskiy A, et al. Electrical conductivity of FeTiO3  ilmenite at high temperature and high pressure[J]. Physical Review B, 2006, 73: 134104.

[3]Poe B, Romano C, Nestola F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa[J]. Physics of the Earth and Planetary Interiors, 2010, 181: 103-111.

[4]Wu X, Zhang B, Xu J, et al. Electrical conductivity measurements of periclase under high pressure and high temperature[J]. Physica B, 2010, 405: 53-56.

[5]Yang X, Keppler H, McCammon C, et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene[J]. Journal of Geophysical Research, 2011, 116: B04208.

[6]Huang Xiaogang, Huang Xiaoge, Bai Wuming. Progress of high temperature and high pressure experimental study on the electrical conductivity of the minerals and rocks[J]. Progress in Geophysics, 2010, 25: 1 247-1 258.

[7]Yoshino T. Laboratory electrical conductivity measurement of mantle minerals[J]. Surveys in Geophysics, 2010, 31: 163-206.

[8]Nover G. Electrical properties of crustal and mantle rocks—A review of laboratory measurements and their explanation[J]. Surveys in Geophysics, 2005, 26: 593-651.

[9]Duba A, Constable S. The electrical conductivity of Lherzolite[J]. Journal of Geophysical Research, 1993, 98: 11 885-11 899.

[10]Dai L, Li H, Liu C, et al. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities[J]. Acta Geologica Sinica- English Edition, 2005, 79: 803-809.

[11]Dai L, Li H, Liu C, et al. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities[J]. Progress in Natural Science, 2006, 16: 387-393.

[12]Li Peng, Zhou Wen’ge, Gong Chaoying, et al. Electrical conductivity of two-pyroxene granulite under high pressure in northern margin of North China craton[J]. Chinese Journal of Geophysics, 2010, 53: 2 386-2 395.

[13]Maumus J, Bagdassarov N, Schmeling H. Electrical conductivity and partial melting of mafic rocks under pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69: 4 703-4 718.

[14]Bagdassarov N, Maumus J, Poe B, et al. Pressure dependence of Tg  in silicate glasses from electrical impedance measurements[J]. Physics and Chemistry of Glasses, 2004, 45: 197-214.

[15]Huang X, Xu Y, Karato S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Nature, 2005, 434: 746-749.

[16]Shimojuku A, Yoshino T, Yamazaki D, et al. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions[J]. Physics of the Earth and Planetary Interiors, 2012, 198/199:1-8.

[17]Gaillard F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure[J]. Earth and Planetary Science Letters, 2004, 218: 215-228.

[18]Pommier A, Gaillard F, Pichavant M, et al. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure[J]. Journal of Geophysical Research, 2008, 113: B05205.

[19]Karato S. The role of hydrogen in the electrical conductivity of the upper mantle[J]. Nature, 1990, 347: 272-273.

[20]Wang D, Mookherjee M, Xu Y, et al. The effect of water on the electrical conductivity of olivine[J]. Nature, 2006, 443: 977-980.

[21]Huang Xiaoge, Bai Wuming, Xu Yousheng, et al. Influence of hydrogen on electrical conductivity of wadsleyite and ringwoodite with its geodynamics implications[J]. Acta Petrologica Sinica, 2005, 21: 1 743-1 748.

[22]Yoshino T, Matsuzaki T, Shatskiy A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J]. Earth and Planetary Science Letters, 2009, 288: 291-300.

[23]Huang X, Xu Y, Karato S. The effects of hydrogen on electrical conductivity in wadsleyite and ringwoodite: Implications for hydrogen content in the mantle transition zone[J]. Eos, Transactions American Geophysical Union,2004,85(Suppl.):47.

[24]Huang X, Xu Y, Karato S. Earth science: A wet mantle conductor? (reply)[J]. Nature, 2006, 439: E3-E4.

[25]Dai L, Karato S. Electrical conductivity of wadsleyite at high temperatures and high pressures[J]. Earth and Planetary Science Letters, 2009, 287: 277-283.

[26]Manthilake M, Matsuzaki T, Yoshino T, et al. Electrical conductivity of wadsleyite as a function of temperature and water content[J]. Physics of the Earth and Planetary Interiors, 2009, 174: 10-18.

[27]Zhu Maoxu, Xie Hongsen, Guo Jie, et al. Electrical conductivity measurement of serpentineat high tempera-tureandpressure[J]. Chinese Science Bulletin, 1999, 20: 1 903-1 907.

[28]Yoshino T, Shimojuku A, Shan S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs[J]. Journal of Geophysical Research, 2012, 117: B08205.

[29]Karato S. Physics and Chemistry of the Deep Earth[M]. New Jersey: Wiley-Blackwell, 2013. 

[30]Hirsch L, Shankland T, Duba A. Electrical conduction and polaron mobility in Fe-bearing olivine[J]. Geophysical Journal International, 1993, 114: 36-44.

[31]Yoshino T, Katsura T. Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone[J]. Physics of the Earth and Planetary Interiors, 2009, 174: 3-9.

[32]Li H, Xie H, Guo J, et al. In situ control of oxygen fugacity at high temperature and high pressure[J]. Journal of Geophysical Research, 1999, 104: 29 439-29 451.

[33]Dai L, Li H, Deng H, et al. In-situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure[J]. Journal of Physics and Chemistry of Solids, 2008, 69: 101-110.

[34]Dai L, Li H, Hu H, et al. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions[J]. Journal of Geophysical Research, 2008, 113: B12211.

[35]Yoshino T, Katsura T. Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite[J]. Earth and Planetary Science Letters, 2012, 337/338: 56-67.

[36]Dai L, Li H, Hu H, et al. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 2012, 163: 689-700.

[37]Shankland T, Waff H. Partial melting and electrical conductivity anomalies in the upper mantle[J]. Journal of Geophysical Research, 1977, 82: 5 409-5 417.

[38]Liu Jianglin, Bai Wuming, Kong Xiangru, et al. Electrical conductivity of granite,basalt and pyroxene peridotite under high temperature high pressure conditions[J]. Chinese Journal of Geophysics, 2001, 44:528-533.

[39]Presnall C, Simmons L, Porath H. Changes in electrical conductivity of a synthetic basalt during melting[J]. Journal of Geophysical Research, 1972, 77:5 665-5 672.

[40]Yoshino T, McIsaac E, Laumonier M, et al. Electrical conductivity of partial molten carbonate peridotite[J]. Physics of the Earth and Planetary Interiors, 2012, 194:1-9.

[41]Ni H, Keppler H, Manthilake M, et al. Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures[J]. Contributions to Mineralogy and Petrology, 2011, 162: 501-513.

[42]Hu H, Li H, Dai L, et al. Electrical conductivity of albite at high temperatures and high pressures[J]. American Mineralogist, 2011, 96: 1 821-1 827.

[43]Jones A, Palmer D, Islam M, et al. Alkali ion migration in albite and K-feldspar[J]. Physics and Chemistry of Minerals, 2004, 31: 313-320.

[44]Bolfan-Casanova N, Keppler H, Rubie D. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle[J]. Earth and Planetary Science Letters, 2000, 182: 209-221.

[45]Xu Y, Poe B, Shankland T, et al. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions[J]. Science, 1998, 280: 1 415-1 418.

[46]Yoshino T, Manthilake G, Matsuzaki T, et al. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite[J]. Nature, 2008, 451: 326-329.

[47]Yoshino T, Matsuzaki T, Yamashita S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[J]. Nature, 2006, 443: 973-976.

[48]Goddat A, Peyronneau J, Poirier J. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle[J]. Physics and Chemistry of Minerals, 1999, 27: 81-87.

[49]Xu Yousheng. A review on the electrical conductivity of mantle minerals and rocks[J]. Earth Science Frontiers, 2000, 7: 229-237. [徐有生. 地幔矿物岩石的电导率研究进展[J]. 地学前缘, 2000, 7: 229-237.]

[50]Dobson D, Richmond N, Brodholt J. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1-xO[J]. Science, 1997, 275: 1 779-1 781.

[51]Dobson D, Brodholt J. The electrical conductivity of the lower mantle phase magnesiowüstite at high temperatures and pressures[J]. Journal of Geophysical Research, 2000, 105: 531-538.

[52]Zhou W, Fan D, Liu Y, et al. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ℃: Comparison with field observations[J]. Geophysical Journal International, 2011, 187: 1 393-1 404.

[53]Noritomi K. Studies on the change of electrical conductivity with temperature of a few silicate minerals[J]. Science Reports of the Tohoku University (Series 5), 1954, 6: 119-126.

[54]Khitarov N, Slutskiy A. The effect of pressure on the melting temperatures of albite and basalt (based on electroconductivity measurements)[J]. Geochemistry International, 1965, 2: 1 034-1 042.

[55]Hu Haiying, Li Heping, Dai Lidong, et al. Experimental study on impedance spectra of microcline under high temperature and high pressure[J]. Journal of Synthetic Crystals, 2011, 40: 284-289.[胡海英, 李和平, 代立东, 等. 高温高压下微斜长石的阻抗谱实验研究[J]. 人工晶体学报, 2011, 40: 284-289.]

[56]Hu Haiying, Li Heping, Dai Lidong, et al. Experimental study on impedance spectra of albite at high temperatures and high pressures[J]. Chinese Journal of High Pressure Physics, 2012, 26: 382-388.[胡海英, 李和平, 代立东, 等. 高温高压下钠长石的阻抗谱实验研究[J]. 高压物理学报, 2012, 26: 382-388.]

[57]Yang X, Keppler H, McCammon C, et al. Electrical conductivity of orthopyroxene and plagioclase in the lower crust[J]. Contributions to Mineralogy and Petrology, 2012, 163: 33-48.

[58]Piwinskii A, Duba A. High temperature electrical conductivity of albite[J]. Geophysical Research Letters, 1974, 1: 209-211.

[59]Bagdassarov N, Delpine N. α-β inversion in quartz from low frequency electrical impedance spectroscopy[J]. Journal of Physics and Chemistry of Solids, 2004, 65: 1 517-1 526.

[60]Mayury F. Conductibilite electrique des tectosilicates. I. Methode etresultats experimentaux Cristallographie[J]. Bulletin de la Societe Francaise de Mineralogie et,1968, 91: 267-278.

[61]Calleja M, Dove M, Salje E. Anisotropic ionic transport in quartz: The effect of twin boundaries[J]. Journal of Physics: Condensed Matter, 2001, 13: 9 445-9 454.

[62]Jain H, Nowick A. Electrical conductivity of synthetic and natural quartz crystals[J]. Journal of Applied Physics, 1982, 53: 477-484.

[63]Lazzari S, Martini M, Paleari A, et al. DC and AC ionic conductivity in quartz: A new high temperature mechanism and a general assessment[J]. Nuclear Instruments and Methods in Physics Research , 1988, 32: 299-302.

[64]Wang D, Li H, Yi L, et al. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature[J]. Journal of Geophysical Research, 2010, 115,B09211,doi:10.1029/2009JB00695.

[65]Dai Lidong, Li Heping, Shan Shuangming, et al. Experimental study on electrical conductivity of Z-axis quartz crystal under high temperature and high pressure[J]. Journal of Synthetic Crystals, 2005, 34: 403-407.[代立东, 李和平, 单双明, 等. 高温高压下 Z 轴水晶的电导率实验研究[J]. 人工晶体学报, 2005, 34: 403-407.]

[66]Shan Shuangming, Li Heping, Dai Lidong, et al. Influence of ionic impurities on the electrical conductivity of synthetic quartz crystals at high temperature and high pressure[J]. Acta Mineralogica Sinica, 2009, 29: 109-112.[单双明, 李和平, 代立东, 等. 高温高压下杂质离子对水晶电导率影响的实验研究[J]. 矿物学报, 2009, 29: 109-112.]

[67]Wang D, Li H, Liu C, et al. Electrical conductivity of synthetic quartz crystals at high temperature and pressure from complex impedance measurements[J]. Chinese Physics Letters, 2002, 19: 1 211-1 213.

[68]Mirwald P, Massonne H. The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1 600 ℃ and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition[J]. Journal of Geophysical Research, 1980, 85: 6 983-6 990.

[69]Huebner J, Voigt D. Electrical conductivity of diopside: Evidence for oxygen vacancies[J]. American Mineralogist, 1988, 73: 1 235-1 254.

[70]Duba A, Boland J, Ringwood A. The electrical conductivity of pyroxene[J]. The Journal of Geology, 1973, 81: 727-735.

[71]Yang X, Heidelbach F. Grain size effect on the electrical conductivity of clinopyroxene[J]. Contributions to Mineralogy and Petrology, 2011, 163: 939-947.

[72]Xu Y, Shankland T. Electrical conductivity of orthopyroxene and its high pressure phases[J]. Geophysical Research Letters, 1999, 26: 2 645-2 648.

[73]Dai Lidong, Li Heping, Liu Congqiang, et al. The electrical conductivity of pyroxenite at high temperature and high pressure[J]. Acta Mineralogica Sinica, 2005, 25: 303-306.[代立东, 李和平, 刘丛强, 等. 高温高压下辉石岩的电导率实验研究[J]. 矿物学报, 2005, 25: 303-306.]

[74]Dai L, Karato S. Electrical conductivity of orthopyroxene:Implications for the water content of the asthenosphere[J]. Proceedings of the Japan Academy (Series B), 2009, 85: 466-475.

[75]Schlechter E, Stalder R, Behrens H. Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy[J]. Physics and Chemistry of Minerals, 2012, 39: 531-541.

[76]Voigt R, Seifert K, Will G. Die elektrische leitfa higkeit von pyroxenen der reihe MgSiO3-FeSiO3 bei 10 and 20 kbar unter definierten thermodynamischen Bedingungen[J]. Neues Jahrbuch fur Mineralogical Monatsch, 1979, 7: 308.

[77]Will G, Cemiè L, Hinze E, et al. Electrical conductivity measurements on olivines and pyroxenes under defined thermodynamic activities as a function of temperature and pressure[J]. Physics and Chemistry of Minerals, 1979, 4: 189-197.

[78]Wang Z, Ji S, Dresen G. Hydrogen-enhanced electrical conductivity of diopside crystals[J]. Geophysical Research Letters, 1999, 26: 799-802.

[79]Duba A, Heard H, Schock R. Electrical conductvity of orthopyroxene to 1 400 ℃ and the resulting selenotherm[C]∥Proceedings in the 7th Lunar Science Conference. New York, 1976: 3 173-3 181.

[80]Duba A, Dennison M, Irving A, et al. Electrical conductivity of aluminous orthopyroxene[J]. Lunar and Planetary Science, 1979, 10: 318-319.

[81]Wang D, Guo Y, Yu Y, et al. Electrical conductivity of amphibole-bearing rocks: Influence of dehydration[J]. Contributions to Mineralogy and Petrology, 2012, 164: 17-25.

[82]Bagdassarov N, Slutskii A. Phase transformations in calcite from electrical impedance measurements[J]. Phase Transitions, 2003, 76:1 015-1 028.

[83]Gaillard F, Malki M, Iacono-Marziano G, et al. Carbonatite melts and electrical conductivity in the asthenosphere[J]. Science, 2008,322:1 363-1 365.

[84]Huang Xiaogang, Huang Xiaoge, Bai Wuming. Study on the electrical conductivity of carbonated peridotite[J]. Chinese Journal of Geophysics, 2012, 55:3 144-3 151.

[85]Lee J, Shang J. Influencing factors on electrical conductivity of compacted kaolin clay[J]. Geomechanics and Engineering, 2001, 26:131-151.

[86]Revil A, Glover P. Nature of surface electrical conductivity sandstones, and clays[J]. Geophysical Research Letters, 1998, 25:691-694.

[87]Yang X. Origin of high electrical conductivity in the lowercontinental crust: A review[J]. Surveys in Geophysics, 2011, 32: 875-903.

[88]Sato H, Ida Y. Low frequency electrical impedance of partially molten gabbro: The effect of melt geometry on electrical properties[J]. Tectonophysics, 1984, 107: 105-134.

[89]Shankland T, Duba A, Mathez E, et al. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks[J]. Journal of Geophysical Research, 1997, 102: 14 741-14 750.

[90]Yang Xiaozhi, Xia Qunke, Yu Huimin, et al. The possible effect of hydrogen on the high electrical conductivity in the lower continental crust[J]. Advances in Earth Science,2006, 21:31-38. [杨晓志, 夏群科, 于慧敏, 等. 大陆下地壳高电导率的起源: 矿物中的结构水[J].地球科学进展, 2006, 21:31-38.]

[91]Jones A. Continental Lower Crust[M]. Amsterdam: Elsevier Science, 1992.

[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[6] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[7] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[8] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[9] 李云春,王显祥,赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1106-1118.
[10] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[11] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[12] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
[13] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[14] 周跃飞,陆现彩,王汝成,陆建军. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23.
[15] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
阅读次数
全文


摘要