Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (5): 465-480    DOI: 10.11867/j.issn.1001-8166.2017.05.0465
综述与评述     
地球下地幔矿物结构和热力学参数的研究进展与展望
廖一帆, 孙宁宇, 毛竹*
地震和地球内部物理实验室,地球和空间学学院,中国科学技术大学,安徽 合肥 230026
Recent Advance and Prospects in the Structure and Thermal Elastic Properties of Lower Mantle Minerals
Liao Yifan, Sun Ningyu, Mao Zhu*
School of Earth and Space Sciences, University of Science and Techonology of China, Hefei 230026, China
 全文: PDF(8128 KB)   HTML
摘要: 下地幔从660 km到2 891 km深度,占据整个地球质量的49.2%并处于极端高温高压的状态。在下地幔相应的温度压力条件下研究主要构成矿物的物理性质,尤其是结构、密度和波速,是理解下地幔结构、物质组成以及动力学过程的关键。通过回顾过去30年高温高压矿物学实验对下地幔矿物,包括布里基曼石、铁方镁石、Ca-钙钛矿以及硅酸盐—后钙钛矿结构和热力学状态方程的重要研究进展,探讨温压条件变化、成分变化以及Fe自旋变化对这些下地幔矿物(相)密度和体波波速的影响,指出现有研究结果的不足和需要解决的问题,并对未来的研究方向提出展望。
关键词: 密度下地幔高温高压条件结构热力学状态方程体波波速    
Abstract: Lower mantle, ranging from 660 km to 2 890 km depth, occupies 49.2% of the Earth by mass and is at extremely high pressure and temperature conditions. Experimental studies on the physical properties of the lower mantle minerals, particular the structure, density, and sound velocity, etc., are important to understand the structure, composition, and dynamic behavior of the region. Here we summarize the recent experimental results on the structure and thermal equation of states of the lower mantle minerals, including bridgmanite, ferropericlase, CaSiO3-perovskite, and silicate post-perovskite, and discuss the effect of pressure, temperature, composition, and Fe-spin transition on the density and bulk sound velocity of those minerals. This review aims to provide new insights into the lower-mantle structure and chemistry and help to understand the observed velocity anomalies in the lower mantle.
Key words: Structure    Density    Lower mantle high pressure-temperature condition    Bulk sound velocity.    Thermal equation of state
收稿日期: 2016-10-11 出版日期: 2017-05-20
ZTFLH:  P31  
基金资助: 国家自然科学基金优秀青年基金项目“地球物理”(编号:41522403)资助
通讯作者: 毛竹(1982-),女,重庆人,教授,主要从事地球内部物质物理性质研究.E-mail:zhumao@ustc.edu.cn   
作者简介: 廖一帆(1993-),男,四川邛崃人,硕士研究生,主要从事地球内部物质物理性质研究.E-mail:lyfan123@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
廖一帆
毛竹
孙宁宇

引用本文:

廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.

Liao Yifan, Sun Ningyu, Mao Zhu. Recent Advance and Prospects in the Structure and Thermal Elastic Properties of Lower Mantle Minerals. Advances in Earth Science, 2017, 32(5): 465-480.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.05.0465        http://www.adearth.ac.cn/CN/Y2017/V32/I5/465

[1] Duffy T S. Some recent advances in understanding the mineralogy of Earth’s deep mantle[J]. Philosophical Transactions of the Royal Society A — Mathematical Physical and Engineering Sciences , 2008, 366(1 883): 4 273-4 293.
[2] Wang X L, Tsuchiya T, Hase A. Computational support for a pyrolitic lower mantle containing ferric iron[J]. Nature Geoscience , 2015,(8): 556-559,doi:10.1038/ngeo2458.
[3] Sun N, Mao Z, Yan S, et al . Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO 3 perovskite[J]. Journal of Geophysical Research , 2016, 121:4 876-4 894,doi:10.1002/2016JB013062.
[4] Cottaar S, Heister T, Rose I, et al . BurnMan: A lower mantle mineral physics toolkit[J]. Geochemistry Geophysics Geosystems ,2014, 15(4): 1 164-1 179.
[5] Zhang S, Cottaar S, Liu T, et al . High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO 3 : Implications for the Earth’s lower mantle[J]. Earth and Planetary Science Letters , 2016, 434: 264-273.
[6] Ringwood A E. Composition and Petrology of the Earth’s Mantle[M]. New York: McGraw-Hill, 1975:672.
[7] Murakami M, Hirose K, Kawamura K, et al . Post-perovskite phase transition in MgSiO 3 [J]. Science ,2004, 304(5 672): 855-858.
[8] Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO 3 in Earth’s D ″ layer[J]. Nature , 2004, 430(6 998): 445-448.
[9] Mao Z, Lin J F, Scott H P, et al . Iron-rich perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters ,2011, 309(3): 179-184.
[10] Mao Z, Lin J F, Yang J, et al . Effects of the Fe 3+ spin transition on the equation of state of bridgmanite[J]. Geophysical Research Letters ,2015, 42(11): 4 335-4 342.
[11] Murakami M, Ohishi Y, Hirao N, et al . A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data[J]. Nature ,2012, 485: 90-118, doi:10.1038/Nature11004.
[12] Murakami M, Sinogeikin S V, Hellwig H, et al . Sound velocity of MgSiO 3 perovskite to Mbar pressure[J]. Earth and Planetary Science Letters ,2007, 256(1/2): 47-54.
[13] Wu Z Q, Justo J F, Wentzcovitch R M. Elastic anomalies in a spin-crossover system: Ferropericlase at lower mantle conditions[J]. Physical Review Letters ,2013, 110, doi:10.1103/Physrevlett.110.228501.
[14] Crowhurst J C, Brown J M, Goncharov A F, et al . Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle[J]. Science , 2008, 319(5 862): 451-453.
[15] Marquardt H, Speziale S, Reichmann H J, et al . Elastic shear anisotropy of ferropericlase in Earth’s lower mantle[J]. Science ,2009, 324(5 924): 224-226.
[16] Jayaraman A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics , 1983, 55(1): 65-108.
[17] Irifune T, Shinmei T, McCammon C A, et al . Iron partitioning and density changes of pyrolite in Earth’s lower mantle[J]. Science ,2010, 327: 193-195.
[18] Dobson D P, Brodholt J P. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary[J]. Nature , 2005, 434(7 031): 371-374.
[19] Hirose K, Fei Y W, Ma Y Z, et al . The fate of subducted basaltic crust in the Earth’s lower mantle[J]. Nature , 1999, 397: 53-56.
[20] Mao W L, Mao H K, Sturhahn W, et al . Iron-rich post-perovskite and the origin of ultralow-velocity zones[J]. Science , 2006, 312: 564-565.
[21] Komabayashi T, Hirose K, Nagaya Y, et al . High-temperature compression of ferropericlase and the effect of temperature on iron spin transition[J]. Earth and Planetary Science Letters , 2010, 297: 691-699.
[22] Mao Z, Lin J F, Liu J, et al . Thermal equation of state of lower-mantle ferropericlase across the spin crossover[J]. Geophysical Research Letters , 2011, 38, doi:10.1029/2011gl049915.
[23] Bengtson A, Li J, Morgan D. Mössbauer modeling to interpret the spin state of iron in (Mg,Fe)SiO 3 perovskite[J]. Geophysical Research Letters , 2009, 36, doi:10.1029/2009gl038340.
[24] Hsu H, Blaha P, Cococcioni M, et al . Spin-state crossover and hyperfine interactions of ferric iron in MgSiO 3 perovskite[J]. Physical Review Letters , 2011, 106, doi:10.1103/Physrevlett.106.118501.
[25] Kurashina T, Hirose K, Ono S, et al . Phase transition in Al-bearing CaSiO 3 perovskite: Implications for seismic discontinuities in the lower mantle[J]. Physics of the Earth and Planetary Interiors , 2004, 145(1/4): 67-74.
[26] Bovolo C I. The physical and chemical composition of the lower mantle[J]. Philosophical Transactions of the Royal Society A — Mathematical Physical and Engineering Sciences , 2005, 363: 2 811-2 835.
[27] Ono S, Ohishi Y, Mibe K. Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle[J]. American Mineralogist , 2004, 89: 1 480-1 485.
[28] Lakshtanov D L, Sinogeikin S V, Litasov K D, et al . The post-stishovite phase transition in hydrous alumina-bearing SiO 2 in the lower mantle of the earth[J]. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104(34): 13 588-13 590.
[29] Prakapenka V P, Shen G Y, Dubrovinsky L S, et al . High pressure induced phase transformation of SiO 2 and GeO 2 : Difference and similarity[J]. Journal of Physics and Chemistry of Solids , 2004, 65(8/9): 1 537-1 545.
[30] Jackson I, Rigden S M. Analysis of P-V-T data: Constraints on the thermoelastic properties of high-pressure minerals[J]. Physics of the Earth and Planetary Interiors ,1996, 96: 85-112.
[31] Jacobsen S D, Reichmann H J, Spetzler H A. et al . Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry[J]. Journal of Geophysical Research-Solid Earth , 2002, 107, doi:10.1029/2001jb000490.
[32] Lin J F, Speziale S, Mao Z, et al . Effects of the electronic spin transitions of iron in lower-mantle minerals: Implications to deep-mantle geophysics and geochemistry[J]. Review in Geophysics , 2013, 51: 2012RG000414.
[33] Badro J, Fiquet G, Guyot F, et al . Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity[J]. Science ,2003, 300(5 620): 789-791.
[34] Fei Y W, Zhang L, Corgne A, et al . Spin transition and equations of state of (Mg, Fe)O solid solutions[J]. Geophysical Research Letters , 2007, 34, doi:10.1029/2007gl090712.
[35] Lin J F, Struzhkin V V, Jacobsen S D, et al . Spin transition of iron in magnesiowustite in the Earth’s lower mantle[J]. Nature , 2005, 436: 377-380.
[36] Speziale S, Lee V E, Clark S M, et al . Effects of Fe spin transition on the elasticity of (Mg, Fe) O magnesiowustites and implications for the seismological properties of the Earth’s lower mantle[J]. Journal of Geophysical Research — Solid Earth , 2007, 112, doi:10.1029/2006jb004730.
[37] Chen B, Jackson J M, Sturhahn W, et al . Spin crossover equation of state and sound velocities of (Mg 0.65 Fe 0.35 )O ferropericlase to 140 GPa[J]. Journal of Geophysical Research-Solid Earth , 2012, 117, doi:10.1029/2012jb009162.
[38] Yang J, Tong X Y, Lin J F, et al . Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle[J]. Scientific Reports , 2015, 5, doi:10.1038/Srep17188.
[39] Marquardt H, Speziale S, Reichmann H J, et al . Single-crystal elasticity of (Mg 0.9 Fe 0.1 )O to 81 GPa[J]. Earth and Planetary Science Letters , 2009, 287: 345-352.
[40] Jacobsen S D, Spetzler H A, Reichmann H J, et al . Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state[J]. Journal of Physics-Condensed Matter , 2002, 14: 11 525-11 530, doi:10.1088/0953-8984/14/44/510.
[41] Speziale S, Zha C S, Duffy T S, et al . Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state[J]. Journal of Geophysical Research , 2001, 106: 515-528.
[42] Tange Y, Nishihara Y, Tsuchiya T. Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments[J]. Journal of Geophysical Research-Solid Earth , 2009, 114, doi:10.1029/2008jb005813.
[43] Tsuchiya T, Wentzcovitch R M, da Silva C R S, et al . Spin transition in magnesiowustite in earth’s lower mantle[J]. Physical Review Letters , 2006, 96, doi:10.1103/Physrevlett.96.198501.
[44] Wentzcovitch R M, Justo J F, Wu Z, et al . Anomalous compressibility of ferropericlase throughout the iron spin cross-over[J]. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(21): 8 447-8 452.
[45] Brown J M, Shankland T J. Thermodynamic parameters in the Earth as determined from seismic profiles[J]. Geophysical Journal of the Royal Astronomical Society , 1981, 66: 579-596.
[46] McCammon C, Hutchison M, Harris J. Ferric iron content of mineral inclusions in diamonds from Sao Luiz: A view into the lower mantle[J]. Science , 1997, 278(5 337): 434-436.
[47] Frost D J, Liebske C, Langenhorst F, et al . Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle[J]. Nature , 2004, 428: 409-412.
[48] Lin J F, Alp E E, Mao Z, et al . Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite[J]. American Mineralogist , 2012, 97(4): 592-597.
[49] Catalli K, Shim S H, Dera P, et al . Effects of the Fe 3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities[J]. Earth and Planetary Science Letters ,2011, 310: 293-302.
[50] Catalli K, Shim S H, Prakapenka V B, et al . Spin state of ferric iron in MgSiO 3 perovskite and its effect on elastic properties[J]. Earth and Planetary Science Letters ,2010, 289(1): 68-75.
[51] Hsu H, Yu Y G, Wentzcovitch R M. Spin crossover of iron in aluminous MgSiO 3 perovskite and post-perovskite[J]. Earth and Planetary Science Letters ,2012, 359/360: 34-39.
[52] Badro J, Rueff J P, Vanko G, et al . Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle[J]. Science , 2004, 305: 383-386.
[53] Lin J F, Watson H, Vanko G, et al . Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite[J]. Nature Geoscience ,2008, 1(10): 688-691.
[54] McCammon C, Kantor I, Narygina O, et al . Stable intermediate-spin ferrous iron in lower-mantle perovskite[J]. Nature Geoscience , 2008, 1(10): 684-687.
[55] Jackson J M, Sturhahn W, Shen G Y, et al . A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO 3 perovskite up to 120 GPa[J]. American Mineralogist , 2005, 90(1): 199-205.
[56] Li J, Sturhahn W, Jackson J M, et al . Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O 3 perovskite: A combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa[J]. Physics and Chemistry of Minerals , 2006, 33(8/9): 575-585.
[57] Narygina O V, Kantor I Y, McCammon C A., et al . Electronic state of Fe 2+ in (Mg,Fe)(Si,Al)O 3 perovskite and (Mg,Fe)SiO 3 majorite at pressures up to 81 GPa and temperatures up to 800 K[J]. Physics and Chemistry of Minerals , 2010, 37(6): 407-415.
[58] Potapkin V, McCammon C, Glazyrin K, et al . Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle[J]. Nature Communications , 2013, 4, doi:10.1038/Ncomms2436.
[59] McCammon C, Dubrovinsky L, Narygina O, et al . Low-spin Fe 2+ in silicate perovskite and a possible layer at the base of the lower mantle[J]. Physics of the Earth and Planetary Interiors , 2010, 180(3): 215-221.
[60] Hsu H, Umemoto K, Blaha P, et al . Spin states and hyperfine interactions of iron in (Mg,Fe)SiO 3 perovskite under pressure[J]. Earth and Planetary Science Letters , 2010, 294(1): 19-26.
[61] Hsu H, Wentzcovitch R M. First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle[J]. Physical Review B , 2014, 90, doi:10.1103/Physrevb.90.195205.
[62] Li J, Struzhkin V V, Mao H K, et al . Electronic spin state of iron in lower mantle perovskite[J]. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(39): 14 027-14 030.
[63] Mao Z, Lin J F, Yang J, et al . Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mössbauer and X-ray emission spectroscopy[J]. American Mineralogist , 2014, 99: 415-423.
[64] Dorfman S M, Badro J, Rueff J P, et al . Composition dependence of spin transition in (Mg,Fe)SiO 3 bridgmanite[J]. American Mineralogist , 2015, 100(10): 2 246-2 253.
[65] Lin J F, Mao Z, Yang J, et al . High-spin Fe 2+ and Fe 3+ in single-crystal aluminous bridgmanite in the lower mantle[J]. Geophysical Research Letters , 2016, 10, doi:10.1002/2016GL069836.
[66] Mao Z, Wang F, Lin J F, et al . Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy[J]. American Mineralogist , 2017, 102(2): 357-368.
[67] Andrault D, Bolfan-Casanova N, Guignot N. Equation of state of lower mantle (Al,Fe)-MgSiO 3 perovskite[J]. Earth and Planetary Science Letters , 2001, 193(3/4): 501-508.
[68] Ballaran T B, Kurnosov A, Glazyrin K, et al . Effect of chemistry on the compressibility of silicate perovskite in the lower mantle[J]. Earth and Planetary Science Letters , 2012, 333: 181-190.
[69] Glazyrin K, Ballaran T B, Frost D J, et al . Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle[J]. Earth and Planetary Science Letters , 2014, 393: 182-186.
[70] Nishio-Hamane D, Seto Y, Fujino K, et al . Effect of FeAlO 3 incorporation into MgSiO 3 on the bulk modulus of perovskite[J]. Physics of the Earth and Planetary Interiors , 2008, 166(3): 219-225.
[71] Saikia A, Ballaran T B, Frost D J. The effect of Fe and Al substitution on the compressibility of MgSiO 3 -perovskite determined through single-crystal X-ray diffraction[J]. Physics of the Earth and Planetary Interiors , 2009, 173: 153-161.
[72] Fiquet G, Dewaele A, Andrault D, et al . Thermoelastic properties and crystal structure of MgSiO 3 perovskite at lower mantle pressure and temperature conditions[J]. Geophysical Research Letters , 2000, 27: 21-24.
[73] Tange Y, Kuwayama Y, Irifune T, et al . P-V-T equation of state of MgSiO 3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle[J]. Journal of Geophysical Research , 2012, 117, doi:10.1029/2011jb008988.
[74] Wolf A S, Jackson J M, Dera P, et al . The thermal equation of state of (Mg, Fe)SiO 3 bridgmanite (perovskite) and implications for lower mantle structures[J]. Journal of Geophysical Research-Solid Earth , 2015, 120(11): 7 460-7 489.
[75] Tsuchiya T, Tsuchiya J, Umemoto K, et al . Phase transition in MgSiO 3 perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters ,2004, 224: 241-248.
[76] Miyagi L, Kanitpanyacharoen W, Kaercher P, et al . Slip systems in MgSiO 3 post-perovskite: Implications for D ″Anisotropy[J]. Science , 2010, 329(5 999): 1 639-1 641.
[77] Hirose K. Postperovskite phase transition and its geophysical implications[J]. Reviews of Geophysics , 2006, 44, doi:10.1029/2005rg000186.
[78] Shieh S R, Dorfman S M, Kubo A, et al . Synthesis and equation of state of post-perovskites in the (Mg,Fe) 3 Al 2 Si 3 O 12 system[J]. Earth and Planetary Science Letters , 2011, 312: 422-428, doi:10.1016/j.epsl.2011.09.054.
[79] Shieh S R, Duffy T S, Kubo A, et al . Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO 3 orthopyroxene[J]. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(9): 3 039-3 043.
[80] Murakami M, Sinogeikin S V, Bass J D, et al . Sound velocity of MgSiO 3 post-perovskite phase: A constraint on the D" discontinuity[J]. Earth and Planetary Science Letters , 2007, 259(1/2): 18-23.
[81] van der Hilst R D, de Hoop M V, Wang P, et al . Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region[J]. Science , 2007, 315(5 820): 1 813-1 817.
[82] Hernlund J W, Thomas C, Tackley P J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle[J]. Nature , 2005, 434: 882-886.
[83] Murakami M, Hirose K, Sata N, et al . Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle[J]. Geophysical Research Letters , 2005, 32, doi:10.1029/2004gl021956.
[84] Ono S,Oganov A R. In situ observations of phase transition between perovskite and CaIrO 3 -type phase in MgSiO 3 and pyrolitic mantle composition[J]. Earth and Planetary Science Letters , 2005, 236: 914-932.
[85] Grocholski B, Catalli K, Shim S H, et al . Mineralogical effects on the detectability of the postperovskite boundary[J]. Proceedings of the National Academy of Sciences of the United States of America , 2012, 109(7): 2 275-2 279.
[86] Catalli K, Shim S H, Prakapenka V. Thickness and Clapeyron slope of the post-perovskite boundary[J]. Nature , 2009, 462: 782-785, doi:Doi doi:10.1038/Nature08598.
[87] Ohta K, Hirose K, Lay T, et al . Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary[J]. Earth and Planetary Science Letters , 2008, 267(1/2): 107-117.
[88] Tsuchiya J, Tsuchiya T. Postperovskite phase equilibria in the MgSiO 3 -Al 2 O 3 system[J]. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(49): 19 160-19 164.
[89] Akber-Knutson S, Steinle-Neumann G, Asimow P D. Effect of Al on the sharpness of the MgSiO 3 perovskite to post-perovskite phase transition[J]. Geophysical Research Letters , 2005, 32, doi:10.1029/2005gl023192.
[90] Tateno S, Hirose K, Sata N, et al . Phase relations in Mg 3 Al 2 Si 3 O 12 to 180 GPa: Effect of Al on post-perovskite phase transition[J]. Geophysical Research Letters , 2005, 32, doi:10.1029/2005gl023309.
[91] Dorfman S M, Shieh S R, Meng Y, et al . Synthesis and equation of state of perovskites in the (Mg, Fe) 3 Al 2 Si 3 O 12 system to 177 GPa[J]. Earth and Planetary Science Letters , 2012, 357: 194-202.
[92] Tateno S, Hirose K, Sata N, et al . Solubility of FeO in (Mg,Fe)SiO 3 perovskite and the post-perovskite phase transition[J]. Physics of the Earth and Planetary Interiors , 2007, 160(3/4): 319-325.
[93] Hirose K, Sinmyo R, Sata N, et al . Determination of post-perovskite phase transition boundary in MgSiO 3 using Au and MgO pressure standards[J]. Geophysical Research Letters , 2006, 33, doi:10.1029/2005gl024468.
[94] Tateno S, Hirose K, Sata N, et al . Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″layer[J]. Earth and Planetary Science Letters , 2009, 277: 130-136.
[95] Holmes N C, Moriarty J A, Gathers G R, et al . The equation of state of platinum to 660 GPa (6.6 Mbar) [J]. Journal of Applied Physics , 1989, 66: 2 962-2 967.
[96] Tsuchiya T. First-principles prediction of the PVT equation of state of gold and the 660-km discontinuity in Earth’s mantle[J]. Journal of geophysical research , 2003, 108(B10): ECV1.1-ECV1.9.
[97] Mao W L, Shen G Y, Prakapenka V B, et al . Ferromagnesian postperovskite silicates in the D’ layer of the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(45): 15 867-15 869.
[98] Caracas R, Cohen R E. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO 3 -FeSiO 3 -Al 2 O 3 system and implications for the lowermost mantle[J]. Geophysical Research Letters , 2005, 32, doi:10.1029/2005gl023164.
[99] Stackhouse S, Brodholt J P, Price G D. Elastic anisotropy of FeSiO 3 end-members of the perovskite and post-perovskite phases[J]. Geophysical Research Letters ,2006, 33, doi:10.1029/2005gl023887.
[100] Hirose K, Wentzcovitch R, Yuen D, et al . Mineralogy of the deep mantle-The post-perovskite phase and its geophysical significance[M]∥Schubert G, ed. Treatise on Geophysics (Second Edition). Oxford: Elsevier, 2015.
[101] Sinmyo R, Hirose K, Muto S, et al . The valence state and partitioning of iron in the Earth’s lowermost mantle[J]. Journal of Geophysical Research-Solid Earth , 2011, 116, doi:10.1029/2010jb008179.
[102] Mao Z, Lin J F, Jacobs C, et al . Electronic spin and valence states of Fe in CaIrO 3 -type silicate post-perovskite in the Earth’s lowermost mantle[J]. Geophysical Research Letters , 2010, 37, doi:10.1029/2010gl045021.
[103] Catalli K, Shim S H, Prakapenka V B, et al . X-ray diffraction and Mossbauer spectroscopy of Fe 3+ -bearing Mg-silicate post-perovskite at 128-138 GPa[J]. American Mineralogist ,2010, 95: 418-421, doi:10.2138/Am.2010.3352.
[104] Yu Y G G, Hsu H, Cococcioni M, et al . Spin states and hyperfine interactions of iron incorporated in MgSiO 3 post-perovskite[J]. Earth and Planetary Science Letters , 2012, 331/332: 1-7.
[105] Mao Z, Lin J F, Yang J, et al . (Fe, Al)-bearing post-perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters ,2014, 403: 157-165.
[106] Shim S H. The postperovskite transition[J]. Annual Review of Earth and Planetary Sciences , 2008, 36: 569-599.
[107] Ono S, Kikegawa T, Ohishi Y. Equation of state of CaIrO 3 -type MgSiO 3 up to 144 GPa[J]. American Mineralogist , 2006, 91: 475-478.
[108] Nishio-Hamane D, Yagi T. Equations of state for postperovskite phases in the MgSiO 3 -FeSiO 3 -FeAlO 3 system[J]. Physics of the Earth and Planetary Interiors , 2009, 175: 145-150.
[109] Funamori N, Jeanloz R, Miyajima N, et al . Mineral assemblages of basalt in the lower mantle[J]. Journal of Geophysical Research-Solid Earth , 2000, 105(B11): 26 037-26 043.
[110] Kesson S E, Fitz Gerald J D, Shelley J M. G. Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures[J]. Nature ,1994, 372: 767-769.
[111] Litasov K D, Ohtani E, Kagi H, et al . Hydrogen solubility in Al-rich stishovite and water transport to the lower mantle[J]. Geochimica et Cosmochimica Acta ,2006, 70: A362-A362, doi:10.1016/j.gca.2006.06.732.
[112] Caracas R, Wentzcovitch R M. Theoretical determination of the structures of CaSiO 3 perovskites[J]. Acta Crystallographica Section B-Structural Science ,2006, 62: 1 025-1 030.
[113] Jung D Y, Oganov A R. Ab initio study of the high-pressure behavior of CaSiO 3 perovskite[J]. Physics and Chemistry of Minerals , 2005, 32(2): 146-153.
[114] Stixrude L, Lithgow-Bertelloni C, Kiefer B, et al . Phase stability and shear softening in CaSiO 3 perovskite at high pressure[J]. Physical Review B , 2007, 75, doi:10.1103/Physrevb.75.024108.
[115] Tamai H, Yagi T. High-pressure and high-temperature phase-relations in CaSiO 3 and CaMgSi 2 O 6 and elasticity of perovskite-type CaSiO 3 [J]. Physics of the Earth and Planetary Interiors ,1989, 54: 370-377.
[116] Shim S H, Duffy T S, Shen G Y. The stability and P-V-T equation of state of CaSiO 3 perovskite in the Earth’s lower mantle[J]. Journal of Geophysical Research-Solid Earth , 2000, 105(B11): 25 955-25 968.
[117] Noguchi M, Komabayashi T, Hirose K. et al . High-temperature compression experiments of CaSiO 3 perovskite to lowermost mantle conditions and its thermal equation of state[J]. Physics and Chemistry of Minerals , 2013, 40: 81-91.
[118] Adams D J, Oganov A R. Ab initio molecular dynamics study of CaSiO 3 perovskite at P-T conditions of Earth’s lower mantle[J]. Physical Review B , 2006, 73, doi:10.1103/PhysRevB.73.184106.
[119] Wang Y B, Weidner D J, Guyot F. Thermal equation of state of CaSiO 3 perovskite[J]. Journal of Geophysical Research-Solid Earth , 1996, 101: 661-672.
[120] Zhang Y G, Zhao D P, Matsui M. et al . Equations of state of CaSiO 3 Perovskite: A molecular dynamics study[J]. Physics and Chemistry of Minerals , 2006, 33: 126-137.
[121] Kawai K, Tsuchiya T. P-V-T equation of state of cubic CaSiO 3 perovskite from first-principles computation[J]. Journal of Geophysical Research-Solid Earth , 2014, 119: 2 801-2 809.
[122] Hirose K. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle[J]. Journal of Geophysical Research-Solid Earth , 2002, 107, doi:10.1029/2001jb000597.
[123] Kesson S E, Fitz Gerald J D, Shelley J M. Mineralogy and dynamics of a pyrolite lower mantle[J]. Nature , 1998, 393: 252-255.
[124] Irifune T, Ringwood A E. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle[J]. Earth and Planetary Science Letters , 1993, 117: 101-110.
[125] Ono S, Ito E, Katsura T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle[J]. Earth and Planetary Science Letters , 2001, 190: 57-63.
[126] Yusa H, Yagi T, Shimobayashi N. A new unquenchable high-pressure polymorph of Ca 3 Al 2 Si 3 O 12 [J]. Physics of the Earth and Planetary Interiors , 1995, 92: 25-31.
[127] Sinogeikin S V, Zhang J Z, Bass J D Elasticity of single crystal and polycrystalline MgSiO 3 perovskite by Brillouin spectroscopy[J]. Geophysical Research Letters , 2004, 31, doi:10.1029/2004gl019559.
[128] Fei Y, Ricolleau A, Frank M, et al . Toward an internally consistent pressure scale[J]. Proceedings of the National Academy of Sciences , 2007, 104(22): 9 182-9 186.
[1] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[2] 潘根兴,丁元君,陈硕桐,孙景玲,冯潇,张晨,郑聚锋,张旭辉,程琨,刘晓雨,卞荣军,李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[3] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[4] 王凡, 刘传玉, 胡石建, 高山, 贾凡, 张林林, 汪嘉宁, 冯俊乔. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782.
[5] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[6] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[7] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[8] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[9] 王坚红, 丁晓敏, 薛峰, 苗春生. 气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究[J]. 地球科学进展, 2017, 32(2): 160-173.
[10] 周怀阳. 洋壳的基本问题与人类的莫霍钻梦想[J]. 地球科学进展, 2017, 32(12): 1245-1252.
[11] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[12] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[13] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[14] 杨占红, 吕连宏, 曹宝, 王晓, 罗宏. 国际能源消费特征比较分析及中国发展建议[J]. 地球科学进展, 2016, 31(1): 94-102.
[15] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.