Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (5): 481-487    DOI: 10.11867/j.issn.1001-8166.2017.05.0481
综述与评述     
雷电流热效应的遥感观测研究进展
李青1, 2, 雷连发3, 王振会1, 2, *, 魏鸣1, 2, 李东帅1
1.南京信息工程大学气象灾害预报预警与评估协同创新中心中国气象局气溶胶—
云—
降水重点实验室,江苏 南京 210044;
2.南京信息工程大学大气物理学院,江苏 南京 210044;
3.西安电子工程研究所,陕西 西安 710100
The Status of Lightning Thermal Effect Observation by Remote Sensing
Li Qing1, 2, Lei Lianfa3, Wang Zhenhui1, 2, *, Wei Ming1, 2, Li Dongshuai1
1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation,Nanjing University of Information Science &
Technology,Nanjing 210044,China;
2.School of Atmospheric Physics, Nanjing University of Information Science &
Technology 210044, China;
3.Xi’an Institute for Electronic Engineering, Xi’an 710100, China
 全文: PDF(1021 KB)   HTML
摘要: 雷电热效应的强度及其影响范围和持续时间(时空尺度),是雷电的重要特征参数,在雷电致灾、雷电防护、雷电化学等应用领域有着重要作用。由于闪电发生时间和地点的随机性,加之强大的回击电流,故难以做到对闪电通道温度的直接测量,只能采用遥感技术。通过概述国内外雷电流热效应测量的光谱技术,分析利用地基微波辐射计开展雷电流热效应微波遥感所面对的问题,以便了解雷电流热效应的观测研究现状,促进开展雷电流热效应的微波遥感观测研究。
关键词: 微波遥感光谱测量技术雷电流热效应    
Abstract: The intensity of lightning thermal effect and its influence scope and duration (temperature, time and space scales), are not only the important characteristic parameters for lightning itself, but also the important factors in lightning disaster, lightning protection, lightning chemistry and other fields of applications. Due to the random feature of lightning occurrence time and place, coupled with a strong return stroke current, it is hard to make direct measurement of the temperature in lightning channel. Therefore, remote sensing technology is the only method at present to be adopted. This article summarized the present status of the methods and techniques based on visible and near-infrared spectra analysis applied for lightning channel thermal effect observations both at home and abroad, and provided a description of using a ground-based, multichannel microwave radiometer for this purpose.
Key words: Visible and infrared spectral measurement technology    Remote sensing.    Lightning thermal effect
收稿日期: 2016-12-13 出版日期: 2017-05-20
ZTFLH:  P407  
基金资助: 国家自然科学基金项目“雷电热效应的微波遥感理论与实验观测研究”(编号:41675028); 江苏高校优势学科建设工程资助项目(PAPD)资助
通讯作者: 王振会(1955-),男,山东荷泽人,教授,主要从事大气探测与遥感研究.E-mail:eiap@nuist.edu.cn   
作者简介: 李青(1987-),女,山东荷泽人,博士研究生,主要从事大气遥感探测研究.E-mail:liqingstu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李青
魏鸣
雷连发
李东帅
王振会

引用本文:

李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.

Li Qing, Lei Lianfa, Wang Zhenhui, Wei Ming, Li Dongshuai. The Status of Lightning Thermal Effect Observation by Remote Sensing. Advances in Earth Science, 2017, 32(5): 481-487.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.05.0481        http://www.adearth.ac.cn/CN/Y2017/V32/I5/481

[1] Prueitt M L. The excitation temperature of lightning[J]. Journal of Geophysical Research , 1963, 68(3):803-811.
[2] Hill R. Channel heating in return-stroke lightning[J]. Journal of Geophysical Research , 1971, 76(3):637-645.
[3] Zhang Yijun, Zhou Xiuji. Review and progress of lightning research[J]. Journal of Applied Meteorological Science ,2007, 17(6): 829-834.
. 应用气象学报, 2007, 17(6): 829-834.]
[4] Li Sicheng,Du Yulong, Zhang Xuekui, et al . Statistics and analysis of oil tank fires[J]. Fire Science and Technology , 2004, 23(2): 117-121.
. 消防科学与技术, 2004, 23(2): 117-121.]
[5] Ma Ming, Lü Weitao, Zhang Yijun, et al .Characteristics of lightning exposure in China from 1997 to 2006[J]. Journal of Applied Meteorological Science , 2008, 19(4): 393-400.
. 应用气象学报, 2008, 19(4): 393-400.]
[6] Ma Ming, Lü Weitao,Zhang Yijun, et al .Analysis of lightning disasters China and their correlative factors[J]. Advances in Earth Science , 2008, 23(8): 856-865.
. 地球科学进展, 2008, 23(8): 856-865.]
[7] Ren Xiaoming,Fu Zhengcai,Liu Quanzhen, et al . Experimental analysis of direct lightning protection for floating roof oil tanks[J]. High Voltage Engineering , 2011, 37(4): 867-873.
. 高电压技术,2011, 37(4): 867-873.]
[8] Zhou Yunjun,Qie Xiushu,Yan Muhong, et al .Ground observation of NOx generated by lightning in thunderstorm weather[J]. Plateau Meteorology , 2003, 22(3): 275-280.
. 高原气象, 2003, 22(3): 275-280.]
[9] Cooray V, Rahman M. Efficiencies for production of NOx and O 3 by streamer discharges in air at atmospheric pressure[J]. Journal of Electrostatics , 2005,63(6/10): 977-983, 986.
[10] Wang Haoliang, Liu Yubao, Zhao Tianliang, et al . Progress in lightning forecast by using numerical weather models and model outputs[J]. Advances in Earth Science ,2017,32(1):44-55.
.地球科学进展,2017,32(1):44-55.]
[11] Zeldovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[M]. New York:Dover Publication,1965.
[12] Borucki W J, Chameides W L. Lightning: Estimates of the rates of energy dissipation and nitrogen fixation[J]. Reviews of Geophysics , 1984,22(4): 363-372.
[13] Wang Y, DeSilva A, Goldenbaum G, et al . Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure[J]. Journal of Geophysical Research , 1998,103(D15): 149-159.
[14] Wang Daohong, Qie Xiushu, Guo Changming. Lightning and Artificial Triggering Lightning[M]. Shanghai: Shanghai Jiaotong University Press, 2000.
.上海:上海交通大学出版社,2000.]
[15] Qu Haiyan, Zhang Tinglong, Pan Huiling. Analysis on correlation retween return stroke current, its thermal effects and lightning spectra, channel temperature[J]. Journal of Arid Meteorology , 2014, 32(1):10-16.
. 干旱气象, 2014, 32(1): 10-16.]
[16] Qu Haiyan, Yuan Ping, Zhang Huaming, et al . Evolution characteristic of near-infrared spectra and temperature along the stroke channel of lightning discharge process[J]. Chinese Journal of Geophysics ,2012,55(8):2 508-2 513.
. 地球物理学报, 2012, 55(8): 2 508-2 513.]
[17] Wang Z, Li Q, Hu F, et al . Remote sensing of lightning by a ground-based microwave radiometer[J]. Atmospheric Research , 2014, 150(1):143-150.
[18] Westwater E, Crewell S, Matzler C. A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere[J]. Radio Science Bulletin ,2004,310:59-80.
[19] Solheim F, Godwin J R, Westwater E, et al . Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods[J]. Radio Science , 1998, 33(2):393-404.
[20] Güldner J, Spänkuch D. Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry[J]. Journal of Atmospheric and Oceanic Technology , 2001, 18(6):925-933.
[21] Ware R, Carpenter R, Güldner J, et al . A multichannel radiometric profiler of temperature, humidity, and cloud liquid[J]. Radio Science , 2003,38(4):77-88.
[22] Ware R, Cimini D, Campos E, et al . Thermodynamic and liquid profiling during the 2010 Winter Olympics[J]. Atmospheric Research , 2013,132/133(10):278-290.
[23] S��nchez J, Posada R, García-Ortega E, et al . A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer[J]. Atmospheric Research , 2013,122(4):43-54.
[24] Guo Lijun, Guo Xueliang. Verification study of the atmospheric temperature and humidity profiles retrieved from the ground-based multi-channels microwave radiometer for persistent foggy weather events in Northern China[J]. Acta Meteorologica Sinica ,2015,73(2):368-381.
. 气象学报, 2015, 73(2): 368-381.]
[25] Liu Hongyan. The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years[J]. Acta Meteorologica Sinica ,2011,69(4):719-728.
.气象学报, 2011, 69(4): 719-728.]
[26] Xu Guirong, Sun Zhentian, Li Wujie, et al .Observational comparison among microwave water radiometer, GPS radiosonde and GPS/MET[J]. Torrential Rain and Disasters , 2010,29(4):315-321.
. 暴雨灾害, 2010, 29(4): 315-321.]
[27] Zhao Ling,Ma Yufen, Zhang Guangxing, et al .Analysis of measuring outcomes from groundbased 35-channel microwave radiometer[J]. Desert and Oasis Meteorology , 2010,4(1):56-58.
.沙漠与绿洲气象, 2010, 4(1): 56-58.]
[28] Han Juejing, Chen Fei,Zhang Zhen, et al .Assessment and characteristics of MP-3000A groundbased microwave radiometer[J]. Meteorological Monthly ,2015,41(2): 226-233.
.气象, 2015,41(2): 226-233.]
[29] Zhang Yijun,Meng Qing,Ma Ming, et al .Development of lightning detection technique with application of lightning data[J]. Journal of Applied Meteorological Science ,2006,17(5):611-620.
.应用气象学报, 2006,17(5):611-620.]
[30] Quick M G, Krider E P. Optical power and energy radiated by natural lightning[J]. Journal of Geophysical Research : Atmospheres , 2013,118(4):1 868-1 879.
[31] Horvath T. Understanding Lightning and Lightning Protection: A Multimedia Teaching Guide[M]. Chichester:John Wiley & Sons,InC.,2006.
[32] Uman M A. The diameter of lightning[J]. Journal of Geophysical Research ,1964,69(4): 583-585.
[33] Griem H R. Plasma Spectroscopy(Vol. 1)[M].New York: McGraw-Hill, 1964.
[34] Uman M A, Orville R E, Salanave L E. The density, pressure, and particle distribution in a lightning stroke near peak temperature[J]. Journal of the Atmospheric Sciences ,1964, 21(3): 306-310.
[35] Qie Xiushu, Zhang Yijun, Zhang Qilin. Study on the characteristics of lightning discharges and the electric structure of thunderstorm[J]. Acta Meteorologica Sinica , 2005,63(5):646-658.
. 气象学报,2005, 63(5): 646-658.]
[36] Wallace L. Note on the spectrum of lightning in the region 3670 to 4280 A[J]. Journal of Geophysical Research , 1960, 65(4):1 211-1 214.
[37] Zhivlyuk Y N, Mandel'shtam S. On the temperature of lightning and force of thunder[J]. Soviet Physics JETP ,1961,13(2):338-340.
[38] Drellishak K S. Partition Functions and Thermodynamic Properties of High Temperature Gases[M]. Tennessee:Amold Enginearing Development Center, Air Force Systems Command, US Air Force, 1964.
[39] Orville R E. A Spectral Study of Lightning Strokes[M]. Tucson: University of Arizona, 1966.
[40] Orville R E, Henderson R W. Absolute spectral irradiance measurements of lightning from 375 to 880 nm[J]. Journal of the Atmospheric Sciences ,1984, 41(21):3 180-3 187.
[41] Weidman C, Boye A, Crowell L. Lightning spectra in the 850-to 1400-nm near-infrared region[J]. Journal of Geophysical Research : Atmospheres ,1989, 94(D11):13 249-13 257.
[42] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part I. A qualitative analysis[J]. Journal of the Atmospheric Sciences ,1968, 25(5): 827-838.
[43] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part II. A quantitative analysis[J]. Journal of the Atmospheric Sciences ,1968, 25(5):839-851.
[44] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke. Part III. A time-dependent model[J]. Journal of the Atmospheric Sciences ,1968,25(5): 852-856.
[45] Yuan Ping, Ouyang Yuhua, Lü Shihua, et al .Characteristic of temperature on lightning return stroke in Qinghai area[J]. Plateau Meteorology , 2006, 25(3): 503-508.
.高原气象,2006,25(3): 503-508.]
[46] Wang Jie, Yuan Ping, Guo Fengxia, et al . Spectral and temperature characteristics of the cloud lightning discharge channel[J]. Science in China ( Series D ), 2009,39(2): 229-234.
. 中国科学:D辑, 2009,39(2): 229-234.]
[47] Wang Xuejuan, Yuan Ping, Cen Jianyong, et al .Study on the radius and energy transmission properties of lightning discharge channel by the spectra[J]. Acta Physica Sinica , 2013,62(10):478-485.
. 物理学报, 2013, 62(10): 478-485.]
[48] Wang Ruiyan, Yuan Ping, Cen Jianyong, et al . Influence of the observation distance on the lightning channel temperature studied by means of spectroscopic diagnosis[J]. Acta Physica Sinica , 2014, 63(9): 470-476.
. 物理学报, 2014, 63(9): 470-476.]
[49] Evans W H, Walker R L. High-speed photographs of lightning at close range[J]. Journal of Geophysical Research , 1963,68: 4 455-4 461.
[50] Zhang Yijun, Lü Weitao, Zheng Dong, et al. Optical observations and analysis of leader-return stroke processes involved in negative cloud-to-ground lightning flashes[J]. High Voltage Engineering ,2008,34(10):2 022-2 029.
. 高电压技术, 2008, 34(10): 2 022-2 029.]
[51] Li Jun, Zhang Yijun, Lü Weitao, et al .Observation of a natural cloud-to-ground lightning with multiple return strokes[J]. Journal of Applied Meteorological Science , 2008, 19(4): 401-411.
.应用气象学报, 2008, 19(4): 401-411.]
[52] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry Vol. 1[M].Boston:Addison-Wesley Publishing Company,1981.
[53] Zhou Xiuji. Microwave Radiation in the Atmospheric and the Principle for Its Remote Sensing[M].Beijing: Science Press,1982.
.北京: 科学出版社, 1982.]
[54] Zhang Peichang, Wang Zhenhui. Fundamentals of Atmospheric Microwave Remote Sensing[M].Beijing: Meteorological Press,1995.
.北京: 气象出版社, 1995.]
[55] Lei Lianfa, Lu Jianping, Zhu Lei, et al . Atmospheric remote sensing using multi-channel ground-based microwave radiometer[J]. Journal of Remote Sensing ,2014,18(1): 180-191.
. 遥感学报, 2014, 18(1): 180-191.]
[56] Ao Xue, Wang Zhenhui, Xu Guirong, et al . Study on the quality control of brightness temperature data observed with ground-based microwave radiometer[J]. Journal of the Meteorological Sciences ,2013,33(2):130-137.
. 气象科学, 2013, 33(2): 130-137.]
[57] Li Qing, Hu Fangchao, Chu Yanli, et al . A consistency analysis and correction of the brightness temperature data observed with a ground based microwave radiometer in Beijing[J]. Remote Sensing Technology and Application ,2014,29(4):547-556.
. 遥感技术与应用, 2014, 29(4): 547-556.]
[58] Wang Zhenhui, Cao Xuefen, Huang Jiansong, et al . Analysis on the working state of a ground-based microwave radiometer based on radiative transfer model and meteorological data variation features[J]. Transactions of Atmospheric Science ,2014,37 (1):1-8.
. 大气科学学报, 2014, 37(1): 1-8.]
[59] Zhu Yayu, Wang Zhenhui, Chu Yanli, et al . Comprehensive quality control and effieiency analysis on brightness temperature data by ground-based microwave radiometer[J]. Journal of the Meteorological Seiences ,2015,35(5):621-628.
. 气象科学, 2015, 35(5): 621-628.]
[60] Liu Yaya, Mao Jietai, Liu Jun, et al . Research of BP neural network for microwave radiometer remote sensing retrieval of temperature, relative humidity,cloud liquid water profiles[J]. Plateau Meteorology , 2010,29(6): 1 514-1 523.
.高原气象,2010,29(6): 1 514-1 523.]
[61] Wang Yun, Wang Zhenghui, Li Qing, et al . Research of the one-dimensional variational algorithm for retrieving temperature and humidity profiles from the ground-based microwave radiometer[J]. Acta Meteorologica Sinica ,2014,72(3):570-582.
. 气象学报, 2014, 72(3): 570-582.]
[62] Radiometrics. Profiler Operator’s Manual[M]. Boulder (USA): Radiometrics Corporation, 2007.
[63] Rose Th.RPG’s Atmospheric Remote Sensing Profilers Operating Manual (Version 8.04)[Z/OL]. 2009.
.ftp:∥radiometer-physics.com/pub/Radiometer/Info/RPG-HATPRO/Manual/ Manual_Profilers.pdf.
[64] Zhu Lei, Lu Jianping, Lei Lianfa, et al .A new multi-channel microwave radiometer and atmospheric measurement analysis[J]. Fire Control Radar Technology ,2014,43(1):84-88.
.火控雷达技术, 2014, 43(1): 84-88.]
[65] Borovsky J E. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels[J]. Journal of Geophysical Research : Atmospheres , 1995, 100(D2): 2 697-2 726.
[66] Wang Zhenhui, Li Xia, Guo Fengxia, et al .Lightning and Lightning Protection with 2 Appendices on Specialized Terms (2 nd )[M].Beijing: China Meteorological Press,2013.
. 北京:气象出版社,2013.]
[67] Chen Weimin. The Principle of Lighting(2 nd )[M].Beijing: China Meteorological Press,2009.
. 北京:气象出版社,2009.]
[68] Cooray V. An Introduction to Lightning[M].Netherlands: Springer Netherlands, 2015.
[1] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[2] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[3] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[4] 张立新, 蒋玲梅, 柴琳娜, 赵少杰, 赵天杰, 李欣欣. 地表冻融过程被动微波遥感机理研究进展[J]. 地球科学进展, 2011, 26(10): 1023-1029.
[5] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[6] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[7] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[8] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.