地球科学进展 ›› 2017, Vol. 32 ›› Issue (5): 481 -487. doi: 10.11867/j.issn.1001-8166.2017.05.0481

上一篇    下一篇

雷电流热效应的遥感观测研究进展
李青 1, 2( ), 雷连发 3, 王振会 1, 2, *( ), 魏鸣 1, 2, 李东帅 1   
  1. 1.南京信息工程大学气象灾害预报预警与评估协同创新中心中国气象局气溶胶—云—降水重点实验室,江苏 南京 210044
    2.南京信息工程大学大气物理学院,江苏 南京 210044
    3.西安电子工程研究所,陕西 西安 710100
  • 收稿日期:2016-12-13 修回日期:2017-03-15 出版日期:2017-05-20
  • 通讯作者: 王振会 E-mail:liqingstu@126.com;eiap@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目“雷电热效应的微波遥感理论与实验观测研究”(编号:41675028);江苏高校优势学科建设工程资助项目(PAPD)资助

The Status of Lightning Thermal Effect Observation by Remote Sensing

Qing Li 1, 2( ), Lianfa Lei 3, Zhenhui Wang 1, 2, *( ), Ming Wei 1, 2, Dongshuai Li 1   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation,Nanjing University of Information Science & Technology,Nanjing 210044,China
    2.School of Atmospheric Physics, Nanjing University of Information Science & Technology 210044, China
    3.Xi’an Institute for Electronic Engineering, Xi’an 710100, China
  • Received:2016-12-13 Revised:2017-03-15 Online:2017-05-20 Published:2017-05-20
  • Contact: Zhenhui Wang E-mail:liqingstu@126.com;eiap@nuist.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Theoretical and observational study on microwave remote sensing of the lightning heating effect”(No.41675028);The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

雷电热效应的强度及其影响范围和持续时间(时空尺度),是雷电的重要特征参数,在雷电致灾、雷电防护、雷电化学等应用领域有着重要作用。由于闪电发生时间和地点的随机性,加之强大的回击电流,故难以做到对闪电通道温度的直接测量,只能采用遥感技术。通过概述国内外雷电流热效应测量的光谱技术,分析利用地基微波辐射计开展雷电流热效应微波遥感所面对的问题,以便了解雷电流热效应的观测研究现状,促进开展雷电流热效应的微波遥感观测研究。

The intensity of lightning thermal effect and its influence scope and duration (temperature, time and space scales), are not only the important characteristic parameters for lightning itself, but also the important factors in lightning disaster, lightning protection, lightning chemistry and other fields of applications. Due to the random feature of lightning occurrence time and place, coupled with a strong return stroke current, it is hard to make direct measurement of the temperature in lightning channel. Therefore, remote sensing technology is the only method at present to be adopted. This article summarized the present status of the methods and techniques based on visible and near-infrared spectra analysis applied for lightning channel thermal effect observations both at home and abroad, and provided a description of using a ground-based, multichannel microwave radiometer for this purpose.

中图分类号: 

[1] Prueitt M L.The excitation temperature of lightning[J]. Journal of Geophysical Research, 1963, 68(3):803-811.
[2] Hill R.Channel heating in return-stroke lightning[J]. Journal of Geophysical Research, 1971, 76(3):637-645.
[3] Zhang Yijun, Zhou Xiuji.Review and progress of lightning research[J]. Journal of Applied Meteorological Science,2007, 17(6): 829-834.
[张义军,周秀骥. 雷电研究的回顾和进展[J]. 应用气象学报, 2007, 17(6): 829-834.]
[4] Li Sicheng,Du Yulong, Zhang Xuekui, et al.Statistics and analysis of oil tank fires[J]. Fire Science and Technology, 2004, 23(2): 117-121.
[李思成, 杜玉龙, 张学魁,等. 油罐火灾的统计分析[J]. 消防科学与技术, 2004, 23(2): 117-121.]
[5] Ma Ming, Lü Weitao, Zhang Yijun, et al.Characteristics of lightning exposure in China from 1997 to 2006[J]. Journal of Applied Meteorological Science, 2008, 19(4): 393-400.
[马明, 吕伟涛, 张义军,等. 1997—2006年我国雷电灾情特征[J]. 应用气象学报, 2008, 19(4): 393-400.]
[6] Ma Ming, Lü Weitao,Zhang Yijun, et al.Analysis of lightning disasters China and their correlative factors[J]. Advances in Earth Science, 2008, 23(8): 856-865.
[马明, 吕伟涛, 张义军, 等. 我国雷电灾害及相关因素分析[J]. 地球科学进展, 2008, 23(8): 856-865.]
[7] Ren Xiaoming,Fu Zhengcai,Liu Quanzhen,et al.Experimental analysis of direct lightning protection for floating roof oil tanks[J]. High Voltage Engineering, 2011, 37(4): 867-873.
[任晓明, 傅正财, 刘全桢,等. 大型浮顶油罐直击雷防护实验分析[J]. 高电压技术,2011, 37(4): 867-873.]
[8] Zhou Yunjun,Qie Xiushu,Yan Muhong, et al.Ground observation of NOx generated by lightning in thunderstorm weather[J]. Plateau Meteorology, 2003, 22(3): 275-280.
[周筠珺, 郄秀书, 言穆弘, 等. 雷暴过程中闪电产生NOx的地面观测研究[J]. 高原气象, 2003, 22(3): 275-280.]
[9] Cooray V, Rahman M.Efficiencies for production of NOx and O3 by streamer discharges in air at atmospheric pressure[J]. Journal of Electrostatics, 2005,63(6/10): 977-983, 986.
[10] Wang Haoliang, Liu Yubao, Zhao Tianliang, et al.Progress in lightning forecast by using numerical weather models and model outputs[J].Advances in Earth Science,2017,32(1):44-55.
[王昊亮,刘玉宝,赵天良,等. 基于数值天气模式及其模式输出的闪电预报研究进展[J].地球科学进展,2017,32(1):44-55.]
[11] Zeldovich Y B, Raizer Y P.Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[M]. New York:Dover Publication,1965.
[12] Borucki W J, Chameides W L.Lightning: Estimates of the rates of energy dissipation and nitrogen fixation[J]. Reviews of Geophysics, 1984,22(4): 363-372.
[13] Wang Y, DeSilva A, Goldenbaum G, et al. Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure[J]. Journal of Geophysical Research, 1998,103(D15): 149-159.
[14] Wang Daohong, Qie Xiushu, Guo Changming.Lightning and Artificial Triggering Lightning[M]. Shanghai: Shanghai Jiaotong University Press, 2000.
[王道洪,郄秀书,郭昌明. 雷电与人工引雷[M].上海:上海交通大学出版社,2000.]
[15] Qu Haiyan, Zhang Tinglong, Pan Huiling.Analysis on correlation retween return stroke current, its thermal effects and lightning spectra, channel temperature[J].Journal of Arid Meteorology, 2014, 32(1):10-16.
[瞿海燕, 张廷龙, 潘慧玲. 回击电流及热效应与闪电光谱和通道温度的相关性分析[J]. 干旱气象, 2014, 32(1): 10-16.]
[16] Qu Haiyan, Yuan Ping, Zhang Huaming, et al.Evolution characteristic of near-infrared spectra and temperature along the stroke channel of lightning discharge process[J]. Chinese Journal of Geophysics,2012,55(8):2 508-2 513.
[瞿海燕, 袁萍, 张华明, 等. 闪电放电过程的近红外光谱及温度沿放电通道的演化特征[J]. 地球物理学报, 2012, 55(8): 2 508-2 513.]
[17] Wang Z, Li Q, Hu F, et al.Remote sensing of lightning by a ground-based microwave radiometer[J]. Atmospheric Research, 2014, 150(1):143-150.
[18] Westwater E, Crewell S, Matzler C.A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere[J]. Radio Science Bulletin,2004,310:59-80.
[19] Solheim F, Godwin J R, Westwater E, et al.Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods[J]. Radio Science, 1998, 33(2):393-404.
[20] Güldner J, Spänkuch D.Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6):925-933.
[21] Ware R, Carpenter R, Güldner J, et al.A multichannel radiometric profiler of temperature, humidity, and cloud liquid[J]. Radio Science, 2003,38(4):77-88.
[22] Ware R, Cimini D, Campos E, et al. Thermodynamic and liquid profiling during the2010 Winter Olympics[J]. Atmospheric Research, 2013,132/133(10):278-290.
[23] Snchez J, Posada R, García-Ortega E, et al.A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer[J]. Atmospheric Research, 2013,122(4):43-54.
[24] Guo Lijun, Guo Xueliang.Verification study of the atmospheric temperature and humidity profiles retrieved from the ground-based multi-channels microwave radiometer for persistent foggy weather events in Northern China[J].Acta Meteorologica Sinica,2015,73(2):368-381.
[郭丽君,郭学良. 利用地基多通道微波辐射计遥感反演华北持续性大雾天气温, 湿度廓线的检验研究[J]. 气象学报, 2015, 73(2): 368-381.]
[25] Liu Hongyan.The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years[J].Acta Meteorologica Sinica,2011,69(4):719-728.
[刘红燕. 三年地基微波辐射计观测温度廓线的精度分析[J].气象学报, 2011, 69(4): 719-728.]
[26] Xu Guirong, Sun Zhentian, Li Wujie, et al.Observational comparison among microwave water radiometer, GPS radiosonde and GPS/MET[J]. Torrential Rain and Disasters, 2010,29(4):315-321.
[徐桂荣, 孙振添, 李武阶,等. 地基微波辐射计与 GPS 无线电探空和 GPS/MET 的观测对比分析[J]. 暴雨灾害, 2010, 29(4): 315-321.]
[27] Zhao Ling,Ma Yufen, Zhang Guangxing,et al.Analysis of measuring outcomes from groundbased 35-channel microwave radiometer[J].Desert and Oasis Meteorology, 2010,4(1):56-58.
[赵玲,马玉芬,张广兴,等. 地基35 通道微波辐射计观测资料的初步分析[J].沙漠与绿洲气象, 2010, 4(1): 56-58.]
[28] Han Juejing, Chen Fei,Zhang Zhen, et al.Assessment and characteristics of MP-3000A groundbased microwave radiometer[J].Meteorological Monthly,2015,41(2): 226-233.
[韩珏靖,陈飞,张臻,等.MP-3000A 型地基微波辐射计的资料质量评估和探测特征分析[J].气象, 2015,41(2): 226-233.]
[29] Zhang Yijun,Meng Qing,Ma Ming,et al.Development of lightning detection technique with application of lightning data[J]. Journal of Applied Meteorological Science,2006,17(5):611-620.
[张义军,孟青,马明,等. 闪电探测技术发展和资料应用[J].应用气象学报, 2006,17(5):611-620.]
[30] Quick M G, Krider E P.Optical power and energy radiated by natural lightning[J]. Journal of Geophysical Research: Atmospheres, 2013,118(4):1 868-1 879.
[31] Horvath T.Understanding Lightning and Lightning Protection: A Multimedia Teaching Guide[M]. Chichester:John Wiley & Sons,InC.,2006.
[32] Uman M A.The diameter of lightning[J]. Journal of Geophysical Research,1964,69(4): 583-585.
[33] Griem H R. Plasma Spectroscopy(Vol. 1)[M].New York: McGraw-Hill, 1964.
[34] Uman M A, Orville R E, Salanave L E.The density, pressure, and particle distribution in a lightning stroke near peak temperature[J]. Journal of the Atmospheric Sciences,1964, 21(3): 306-310.
[35] Qie Xiushu, Zhang Yijun, Zhang Qilin.Study on the characteristics of lightning discharges and the electric structure of thunderstorm[J]. Acta Meteorologica Sinica, 2005,63(5):646-658.
[郄秀书, 张义军, 张其林. 闪电放电特征和雷暴电荷结构研究[J]. 气象学报,2005, 63(5): 646-658.]
[36] Wallace L.Note on the spectrum of lightning in the region 3670 to 4280 A[J]. Journal of Geophysical Research, 1960, 65(4):1 211-1 214.
[37] Zhivlyuk Y N, Mandel'shtam S. On the temperature of lightning and force of thunder[J].Soviet Physics JETP,1961,13(2):338-340.
[38] Drellishak K S.Partition Functions and Thermodynamic Properties of High Temperature Gases[M]. Tennessee:Amold Enginearing Development Center, Air Force Systems Command, US Air Force, 1964.
[39] Orville R E.A Spectral Study of Lightning Strokes[M]. Tucson: University of Arizona, 1966.
[40] Orville R E, Henderson R W.Absolute spectral irradiance measurements of lightning from 375 to 880 nm[J]. Journal of the Atmospheric Sciences,1984, 41(21):3 180-3 187.
[41] Weidman C, Boye A, Crowell L.Lightning spectra in the 850-to 1400-nm near-infrared region[J]. Journal of Geophysical Research: Atmospheres,1989, 94(D11):13 249-13 257.
[42] Orville R E.A high-speed time-resolved spectroscopic study of the lightning return stroke: Part I. A qualitative analysis[J]. Journal of the Atmospheric Sciences,1968, 25(5): 827-838.
[43] Orville R E.A high-speed time-resolved spectroscopic study of the lightning return stroke: Part II. A quantitative analysis[J]. Journal of the Atmospheric Sciences,1968, 25(5):839-851.
[44] Orville R E.A high-speed time-resolved spectroscopic study of the lightning return stroke. Part III. A time-dependent model[J]. Journal of the Atmospheric Sciences,1968,25(5): 852-856.
[45] Yuan Ping, Ouyang Yuhua, Lü Shihua,et al.Characteristic of temperature on lightning return stroke in Qinghai area[J]. Plateau Meteorology, 2006, 25(3): 503-508.
[袁萍, 欧阳玉花,吕世华,等.青海地区闪电回击通道的温度特性[J].高原气象,2006,25(3): 503-508.]
[46] Wang Jie, Yuan Ping, Guo Fengxia,et al.Spectral and temperature characteristics of the cloud lightning discharge channel[J]. Science in China (Series D), 2009,39(2): 229-234.
[王杰,袁萍,郭凤霞,等.云闪放电通道的光谱及温度特性[J]. 中国科学:D辑, 2009,39(2): 229-234.]
[47] Wang Xuejuan, Yuan Ping, Cen Jianyong, et al.Study on the radius and energy transmission properties of lightning discharge channel by the spectra[J]. Acta Physica Sinica, 2013,62(10):478-485.
[王雪娟, 袁萍, 岑建勇, 等. 依据光谱研究闪电放电通道的半径及能量传输特性[J]. 物理学报, 2013, 62(10): 478-485.]
[48] Wang Ruiyan, Yuan Ping, Cen Jianyong,et al.Influence of the observation distance on the lightning channel temperature studied by means of spectroscopic diagnosis[J]. Acta Physica Sinica, 2014, 63(9): 470-476.
[王瑞燕, 袁萍, 岑建勇, 等. 闪电通道温度诊断中观测距离的影响[J]. 物理学报, 2014, 63(9): 470-476.]
[49] Evans W H, Walker R L.High-speed photographs of lightning at close range[J]. Journal of Geophysical Research, 1963,68: 4 455-4 461.
[50] Zhang Yijun, Lü Weitao, Zheng Dong, et al.Optical observations and analysis of leader-return stroke processes involved in negative cloud-to-ground lightning flashes[J].High Voltage Engineering,2008,34(10):2 022-2 029.
[张义军, 吕伟涛, 郑栋, 等. 负地闪先导—回击过程的光学观测和分析[J]. 高电压技术, 2008, 34(10): 2 022-2 029.]
[51] Li Jun, Zhang Yijun, Lü Weitao,et al.Observation of a natural cloud-to-ground lightning with multiple return strokes[J].Journal of Applied Meteorological Science, 2008, 19(4): 401-411.
[李俊,张义军,吕伟涛,等.一次多回击自然闪电的高速摄像观测[J].应用气象学报, 2008, 19(4): 401-411.]
[52] Ulaby F T, Moore R K, Fung A K.Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry Vol. 1[M].Boston:Addison-Wesley Publishing Company,1981.
[53] Zhou Xiuji.Microwave Radiation in the Atmospheric and the Principle for Its Remote Sensing[M].Beijing: Science Press,1982.
[周秀骥, 大气微波辐射及遥感原理[M].北京: 科学出版社, 1982.]
[54] Zhang Peichang, Wang Zhenhui.Fundamentals of Atmospheric Microwave Remote Sensing[M].Beijing: Meteorological Press,1995.
[张培昌,王振会.大气微波遥感基础[M].北京: 气象出版社, 1995.]
[55] Lei Lianfa, Lu Jianping, Zhu Lei, et al.Atmospheric remote sensing using multi-channel ground-based microwave radiometer[J].Journal of Remote Sensing,2014,18(1): 180-191.
[雷连发,卢建平,朱磊,等. 多通道地基微波辐射计大气遥感[J]. 遥感学报, 2014, 18(1): 180-191.]
[56] Ao Xue, Wang Zhenhui, Xu Guirong, et al.Study on the quality control of brightness temperature data observed with ground-based microwave radiometer[J].Journal of the Meteorological Sciences,2013,33(2):130-137.
[敖雪, 王振会, 徐桂荣, 等. 微波辐射计亮温观测质量控制研究[J]. 气象科学, 2013, 33(2): 130-137.]
[57] Li Qing, Hu Fangchao, Chu Yanli, et al.A consistency analysis and correction of the brightness temperature data observed with a ground based microwave radiometer in Beijing[J].Remote Sensing Technology and Application,2014,29(4):547-556.
[李青, 胡方超, 楚艳丽, 等. 北京一地基微波辐射计的观测数据一致性分析和订正实验[J]. 遥感技术与应用, 2014, 29(4): 547-556.]
[58] Wang Zhenhui, Cao Xuefen, Huang Jiansong,et al.Analysis on the working state of a ground-based microwave radiometer based on radiative transfer model and meteorological data variation features[J].Transactions of Atmospheric Science,2014,37(1):1-8.
[王振会, 曹雪芬, 黄建松, 等. 基于气象资料变化特征和辐射传输模式的微波辐射计工作状态分析[J]. 大气科学学报, 2014, 37(1): 1-8.]
[59] Zhu Yayu, Wang Zhenhui, Chu Yanli,et al.Comprehensive quality control and effieiency analysis on brightness temperature data by ground-based microwave radiometer[J].Journal of the Meteorological Seiences,2015,35(5):621-628.
[朱雅毓, 王振会, 楚艳丽, 等. 地基微波辐射计亮温观测数据的综合质量控制与效果分析[J]. 气象科学, 2015, 35(5): 621-628.]
[60] Liu Yaya, Mao Jietai, Liu Jun,et al.Research of BP neural network for microwave radiometer remote sensing retrieval of temperature, relative humidity,cloud liquid water profiles[J]. Plateau Meteorology, 2010,29(6): 1 514-1 523.
[刘亚亚, 毛节泰, 刘钧,等. 地基微波辐射计遥感大气廓线的 BP 神经网络反演方法研究[J].高原气象,2010,29(6): 1 514-1 523.]
[61] Wang Yun, Wang Zhenghui, Li Qing, et al.Research of the one-dimensional variational algorithm for retrieving temperature and humidity profiles from the ground-based microwave radiometer[J].Acta Meteorologica Sinica,2014,72(3):570-582.
[王云, 王振会, 李青, 等. 基于一维变分算法的地基微波辐射计遥感大气温湿廓线研究[J]. 气象学报, 2014, 72(3): 570-582.]
[62] Radiometrics. Profiler Operator’s Manual[M]. Boulder (USA): Radiometrics Corporation, 2007.
[63] Rose Th.RPG’s Atmospheric Remote Sensing Profilers Operating Manual (Version 8.04)[Z/OL]. 2009.
[2016-09-20].ftp:∥radiometer-physics.com/pub/Radiometer/Info/RPG-HATPRO/Manual/ Manual_Profilers.pdf.
[64] Zhu Lei, Lu Jianping, Lei Lianfa, et al.A new multi-channel microwave radiometer and atmospheric measurement analysis[J].Fire Control Radar Technology,2014,43(1):84-88.
[朱磊,卢建平,雷连发,等.新型多通道微波辐射计及大气观测分析[J].火控雷达技术, 2014, 43(1): 84-88.]
[65] Borovsky J E.An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D2): 2 697-2 726.
[66] Wang Zhenhui, Li Xia, Guo Fengxia, et al.Lightning and Lightning Protection with 2 Appendices on Specialized Terms (2nd)[M].Beijing: China Meteorological Press,2013.
[王振会,李霞,郭凤霞,等.雷电科学与技术专业英语读物(第二版)[M]. 北京:气象出版社,2013.]
[67] Chen Weimin.The Principle of Lighting(2nd)[M].Beijing: China Meteorological Press,2009.
[陈渭民. 雷电学原理(第二版)[M]. 北京:气象出版社,2009.]
[68] Cooray V.An Introduction to Lightning[M].Netherlands: Springer Netherlands, 2015.
[1] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[2] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[3] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[4] 张立新, 蒋玲梅, 柴琳娜, 赵少杰, 赵天杰, 李欣欣. 地表冻融过程被动微波遥感机理研究进展[J]. 地球科学进展, 2011, 26(10): 1023-1029.
[5] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[6] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[7] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[8] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
阅读次数
全文


摘要