地球科学进展 ›› 2011, Vol. 26 ›› Issue (10): 1023 -1029. doi: 10.11867/j.issn.1001-8166.2011.10.1023

综述与评述 上一篇    下一篇

地表冻融过程被动微波遥感机理研究进展
张立新 1,2,3, 蒋玲梅 1,2,3, 柴琳娜 1,2,3, 赵少杰 1, 赵天杰 1, 李欣欣 1   
  1. 1.北京师范大学地理学与遥感科学学院,北京100875;
    2.北京师范大学/中国科学院遥感应用研究所遥感科学国家重点实验室,北京100875;
    3.北京师范大学环境遥感与数字城市北京市重点实验室,北京100875
  • 收稿日期:2011-01-12 修回日期:2011-08-28 出版日期:2011-10-10
  • 通讯作者: 张立新(1966-),男,河北清苑人,教授,主要从事微波遥感研究 E-mail:lxzhang@bnu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“复杂地表冻融过程被动微波遥感机理研究”(编号: 41030534 );国家自然科学基金面上项目“冻土微波辐射有效穿透深度研究”(编号:40971195)资助.

Research Advances in Passive Microwave Remote Sensing of Freeze-Thaw Processes over Complex Landscapes

Zhang Lixin 1,2,3, Jiang Lingmei 1,2,3, Chai Linna 1,2,3, Zhao Shaojie 1, Zhao Tianjie 1, Li Xinxin 1   

  1. 1. School of Geography and Remote Sensing Science, Beijing Normal University, Beijing100875, China;
    2. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing100875, China;
    3.Beijing Key Laboratory of Environmental Remote Sensing and Digital City,Beijing Normal University,Beijing100875,China
  • Received:2011-01-12 Revised:2011-08-28 Online:2011-10-10 Published:2011-10-10

地表冻融过程及参数特征是陆表过程、气候模式、全球变化等研究的重要方面。被动微波遥感由于具有对土壤水分敏感、高时间分辨率等特点,非常适合用于地表冻融过程的监测和相关参数的反演。在分析地表冻融过程被动微波遥感机理研究发展现状的基础上,面向全球范围内大尺度陆表冻融过程微波遥感算法发展的需求,针对由土壤、积雪和植被组合的复杂地表,从基础研究角度,总结凝练了存在的科学问题,为研究工作的深入开展提供了参考思路。

Soil Freeze-Thaw processes and parameters play an essential role in land surface processes, climate models, global change and other critical aspects. Since passive microwave is sensitive to soil moisture, and has a high revisit frequency, it is suitable for the monitoring of soil Freeze-Thaw processes. Research achievements in microwave remote sensing of frozen soil are reviewed and discussed in this paper. According to the research demands including frozen soil radiation simulation and globally monitoring of frozen soil, several current scientific issues are  proposed and analyzed. The ability of microwave remote sensing of Freeze-Thaw processes over complex landscapes involving soils, snow cover and vegetation cover is well evaluated. A preliminary research proposal  is presented for addressing these issues.

中图分类号: 

[1] Zuerndorfer B,England A W,Dobson M C,et al.Mapping Freeze/Thaw boundaries with SMMR data[J].Journal of Agriculture and Forest Meteorology,1990, 52(1/2): 199-225.
[2] Zuerndorfer B, England A W. Radiobrightness decision criteria for Freeze/Thaw boundaries[J].IEEE Transactions on Geoscience and Remote Sensing,1992, 30(1): 89-102.
[3] Judge J, Galantowicz J F, England A W, et al. Freeze/Thaw classification for prairie soils using SSM/I radio brightnesses[J].IEEE Transactions on Geosicence and Remote Sensing,1997, 35(4): 827-832.
[4] Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J].Geophysical Research Letters, 2001, 28(5): 763-766.
[5] Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil Freeze-Thaw cycle in the contiguous United States: Algorithm development and validation[J]. Journal of Geophysical Research, 2003, 108(D22): 8 860.
[6] Schmugge T, O′Neill P E, Wang J R. Passive microwave soil moisture research[J].IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(1): 12-22.
[7] JacksonT J, Schmugge T J. Passive microwave remote sensing system for soil moisture: Some supporting research[J]. IEEE Transactions on Antennas and Propagation,1989, 27(2): 225-235.
[8] Foster J L, Hall D K, Chang A T C, et al. An overview of passive microwave snow research and results[J].Review of Geophysics and Space Physics,1984, 22(2): 195-208.
[9] Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J].Allnals of Glaciology,1987, 9: 39-44.
[10] England A W. Radiobrightness of diurnally heated, freezing soil[J].IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4):464- 476.
[11] Wegmüller U. The effect of freezing and thawing on the microwave signatures of bare soil[J].Remote Sensing of Environment,1990, 33(2): 123-135.
[12] Liou Y, England A W. Annual temperature and radiobrightness signatures for bare soils[J]. IEEE Transactions on Geoscience and Remote Sensing,1996, 34(4): 981-990.
[13] Smith N V, Saatchi S S, Randerson J T. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002[J]. Journal of Geophysical Research, 2004, 109: D12101.
[14] Jin R, Li X, Che T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J].Remote Sensing of Environment, 2009, 113: 2 651-2 660.
[15] Han L, Tsunekawa  A, Tsubo M. Monitoring near-surface soil freeze-thaw cycles in northern China and Mongolia from 1998 to 2007[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):375-384.
[16] Zhao T, Zhang L, Jiang L, et al. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J].Hydrological Processes,2011,25:1 704-1 716.
[17] Kim Y, Kimball J S, McDonald K C,et al. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(3):949-960.
[18] Zhang L X, Zhao T J, Jiang L M, et al. Estimate of phase transition water content in freeze-thaw process using microwave radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2010, 48(12): 4 248-4 255.
[19] Hoekstra P, Delaney A. Dielectric properties of soils at UHF and microwave frequencies[J].Journal of Geophysical Research,1974,79(11): 1 699-1 708.
[20] Hallikainen M T, Ulaby F T, Dobson M C, et al. Microwave dielectric behavior of wet soil-Part I: Empirical models and experimental observations[J].IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1): 25-34.
[21] Zhang L, Shi J, Zhang Z, et al. The estimation of dielectric constant of frozen soil-water mixture at microwave bands[C]Proceedings of Geoscience and Remote Sensing Symposium, 2003, 4: 2 903-2 905.
[22] Mironov V L, Dobson M C, Kaupp V H, et al. Generalized refractive mixing dielectric model for moist soils[J].IEEE Transactions on Geoscience and Remote Sensing,2004, 42(4): 773-785.
[23] Li Liying, Zhang Lixin, Zhao Shaojie. Laboratory measurement of the dielectric constant of frozen soil[J].Journal of Beijing Normal University(Natural Science),2007,43(3):241-244.[李丽英, 张立新, 赵少杰. 冻土介电常数的实验研究[J]. 北京师范大学学报:自然科学版, 2007, 43(3): 241-244.]
[24] England A W. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties[J].Pure and Applied Geophysics, 1976, 114(2): 287-299.
[25] England A W, Galantowicz J F, Zuerndorfer B W. A volume scattering explanation for the negative spectral gradient of frozen soil[C]Proceedings of the IEEE International  Geoscience and Remote Sensing Symposium,1991,3:1 175-1 177.
[26] Liou Y, England A W. A land-surface process/radiobrightness model with coupled heat and moisture transport for freezing soils[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(2): 669-677.
[27] Schwank M, Stahli M, Wydler H, et al. Microwave L-band emission of freezing soil [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6): 1 252-1 261.
[28] Mironov V L, Bobrov P P, Zhirov P V, et al. Radiobrightness dynamics of freezing/thawing processes for different soils[C]Proceedings of  the IEEE International  Geoscience and Remote Sensing Symposium, 2006:2 998-3 001.
[29] Zhang Lixin, Zhao Shaojie, Jiang Lingmei. The time series of microwave radiation from representative land surface in the upper reaches of Heihe River during alternation of freezing and thawing[J].Journal of Glaciology and Geocryology, 2009, 31(2): 198-206.[张立新, 赵少杰, 蒋玲梅.冻融交替季节黑河上游代表性地物类型的微波辐射时序特征[J]. 冰川冻土, 2009, 31(2): 198-206.]
[30] Zhao S, Zhang L, Zhang Y, et al. The coherent microwave emission of freezing soil: Experimental research and model simulation[C]Proceedings of Geoscience and Remote Sensing Symposium, 2009, 2: 678-681.
[31] Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J].Proceedings of the IEEE,2010, 98(5): 666-687.
[32] Le Vine D M, Lagerloef G S E, Colomb F R, et al. Aquarius: An instrument to monitor sea surface salinity from space[J].IEEE Transactions on Geoscience and Remote Sensing,2007, 45(7): 2 040-2 050.
[33] Entekhabi D, Njoku E G, O′Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission [J].Proceedings of the IEEE,2010, 98(5): 704-716.

[1] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[2] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[3] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[4] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[5] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[6] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[7] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[8] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
阅读次数
全文


摘要