[1] Fang Yinxia, Li Mingbi, Chu Fengyou. The influence to global climate change of the methane releasing from the marine gas hydrate[J]. Progress in Geophysics, 2004, 19(2):286-290.[方银霞, 黎明碧, 初凤友. 海底天然气水合物中甲烷逸出对全球气候的影响[J].地球物理学进展,2004, 19(2):286-290.] [2] Valentine D L, Kastiner M, Wardlaw G D, et al. Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon[J]. Journal of Geophysical Research, 2005, 110: 1-17. [3] Amouroux D, Roberts G, Rapsomanikis S, et al. Biogenic gas(CH4, N2O, DMS) emission to the atmosphere from near-shore of the North-Western Black Sea[J]. Estuarine, Coastal & Shelf Science, 2002, 54(3): 575-587. [4] Reeburgh W S. Global methane biogeochemistry[J]. Treatise on Geochemistry, 2003, 4:1-25. [5] Zhou Huaiyang, Wu Zijun, Peng Xiaotong, et al. The detection of methane in hydrothermal plumes at the Logatchev vent field, the Mid-Atlantic Ridge [J]. Science Bulletin, 2007, 52(9):1 058-1 063.[周怀阳, 吴自军, 彭晓彤,等. 大西洋洋中脊Logatchev热液场水柱中甲烷羽状流的探测[J]. 科学通报,2007, 52(9):1 058-1 063.] [6] Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10):4 638-4 663.[7] Aleksanyan M. Methane sensor based on SnO2/In2O3TiO2 nanostrucure[J]. Journal of Contemporary Physics, 2010, 45(2):77-80. [8] Garcial M L, Masson M. Environmental and geologic application of solid-state methane sensors[J]. Environmental Geology, 2004, 46(8):1 059-1 063. [9] Newman K, Cormier M, Weissel J, et al. Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break[J].Earth and Planetary Science Letters, 2008, 267(1/2): 341-352. [10] Krabbenhoeft A, Netzeband G, Bialas J, et al.Edisodic methane concentrations at seep sites on the upper slope Opouawe Bank, Southern Hikurangi Margin, New Zealand[J]. Marine Geology, 2010,272(1/4): 71-78. [11] Boulart C, Connelly D P, Mowlem M C. Sensors and technologies for in situ dissolved methane measurements and their evaluation using technology readiness levels[J]. Trends in Analytical Chemistry, 2010, 29(2):186-195. [12] Short R T, Fries D P, Toler S K, et al. Development of an underwater mass-spectrometry system for in situ chemical analysis[J]. Measurement Science and Technology,1999,(10):1 195-1 201. [13] Schluter M, Gentz T. Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments[J].Journal of the American Society for Mass Spectrometry, 2008, 19(10): 1 395-1 402. [14] Camili R, Hemond H F. NEREIS/Kemonaut, a mobile autonomous underwater mass spectrometer[J].Trends in Analytical Chemistry, 2004, 23(24):307-313. [15] Camilli R, Duryea A. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in-situ mass spectrometry[J]. Environment Science & Technology, 2009, 43(13):5 014-5 021. [16] Wankel S, Joye S, Samarkin V, et al. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry[J]. Deep-Sea Research II, 2010, 57(21/23):2 022-2 029. [17] Gulzow W, Rehder G, Schneider B, et al. A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis Integrated Cavity Output Spectroscopy(ICOS): An example from the Baltic sea[J]. Limnology and Oceanography, 2011, 9:176-184. [18] Pejcic B, Eadington P, Ross A. Environmental monitoring of hydrocarbons: A chemical sensor perspective[J].Environmental Science & Technology,2007, 41(18): 6 333-6 342. [19] Messica A, Greenstein A, Katzir A. Theory of fiber-optic, evanescent-wave spectroscopy and sensors[J]. Applied Optics, 1996, 35(13):2 274-2 284. [20] Pejcic B, Myers M, Ross A. Mid-infrared sensing of organic pollutants in aqueous environments[J]. Sensors, 2009, 9(8): 6 232-6 253. [21] Mizaikoff B. Mid-Infrared fiber optic evanescent wave sensor—A novel approach for subsea monitoring[J]. Measurement Science and Technology, 1999,10:1 185-1 194. [22] kraft M, Jakusch M, Karlowatz M, et al. New frontiers for mid-infrared sensors: Towards deep sea monitoring with a submarine FT-IR sensor system[J]. Applied Spectroscopy, 2003, 57(7): 591-599. [23] Urashi T, Arakawa T. Detection of lower hydrocarbons by means of surface plasma resonance[J]. Sensors and Actuators, 2001,76(1/3):32-35. [24] Boulart C, Mowlem M, Connelly D, et al. A novel, low cost, high performance dissolved methane sensor for aqueous environments[J].Optics Express, 2008, 16(17):12 607-12 617. [25] White S. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals[J]. Chemical Geology, 2009, 259(3/4):240-252. [26] Pasteris D, Wopenka B, Freeman J, et al. Raman spectroscopy in the deep ocean: Successes and challenges[J]. Applied Spectroscopy, 2004, 58:195-208. [27] White S. Qulitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy[J]. Applied Spectroscopy,2010, 64(7): 819-827. [28] Fleischmann M, Hendra J, McQuillan J. Raman spectra of pyridine adsorbed data silver electrode[J]. Chemical Physics Letters, 1974, 26(2):163-166. [29] Schmidi H, Bich Ha N, Pfannkuche J, et al. Detection of PAHs in seawater using Surface-Enhanced Raman Scattering(SERS)[J]. Marine Pollution Bulletin,2004, 49(3): 229-234. [30] Olivier P, Emmanuel R, Michel L, et al. Detection of Polycyclic Aromatic Hydrocarbon(PAH) compounds in artificial sea-water using Surface-Enhanced Raman Scattering(SERS)[J]. Talanta, 2009, 79(2):199-204. [31] Olivier P, Emmanuel R, Florent C, et al. First steps of in situ surface-enhanced Raman scattering during shipboard experiments[J]. Applied Spectroscopy, 2010, 64(10):1 086-1 093. [32] Kroger S, Law R. Biosensors for marine applications: We all need the sea, but does the sea need biosensors?[J]. Biosensors and Bioelectronics, 2005, 20(10):1 903-1 913. [33] Damgaard L, Revsbech N. A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir[J]. Analytical Chemistry, 1997, 69(13):2 262-2 267. [34] Damgaard L, Nielsen P, Reichardt W. Methane micro-profiles in a sewage biofilm determined with a microscale biosensor[J]. Water Research, 2001, 35(6):1 379-1 386. |