[1] Riding R. Microbial carbonate: The geological record of calcified bacterial-algal mats and biolfilms[J].Sedimentology, 2000, 47: 179-214. [2] Fowle D A, Roberts J A, Fortin D, et al. The evolution of geomicrobiology: Perspectives from the mineral-bacteria interface[J].Geobiology,2007, 5:207-210. [3] Warren L A, Kauffman M E. Microbial geoengineers[J].Science,2003, 299: 1 027-1 029. [4] Sorby H C. On the structure and origin of limestones[C]∥Anniversary Address of the President. Geological Society of London, 1879,35: 39-95. [5] Kalkowsky E. Oolith und Stromatolith in norddeutschen Buntsandstein[J].Zeitschrift der Deutschen Geologischen Gesellschaft,1908, 60: 68-125. [6] Aitken J D. Classification and environmental significance of crytalgal limestones and dolomites, with illustration from Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Petrology,1967, 37: 1 163-1 178. [7] Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2: 241-254. [8] Riding R. Classification of microbial carbonates[C]∥Riding R ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 1991:21-51. [9] Reitner J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia)—Formation and concepts[J].Facies, 1993, 29: 3-40. [10] Delgado O, Lapointe B E. Nutrient-limited productivity of calcareous versus fleshy macroalgea in a eutrophic, carbonate-rich tropical marine environment[J]. Coral Reefs, 1994, 13(3): 151-159. [11] Feldmann M, McKenzie J A. Stormatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas[J]. Palaios,1998, 13: 201-212. [12] Sprachta S, Camoin G, Golubic S,et al. Microbialites in a modern lagoonal environment: Nature and distribution, Tikehau atoll (French Polynesia) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,175:103-124. [13] Webb G E, Baker J C, Jell J S. Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia[J].Geology,1998, 26:355-358. [14] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64:1 557-1 565. [15] Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from Upper Devonian, Alberta basin, Canada[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,181:127-151. [16] Sepkoski Jr J. Mass extinctions in the Phanerozoic oceans: A review[C]∥Silver L T, Schultz P H, eds. Geological Inplications of the Impact of large Asteroids and Coments on the Earth. Special Papers of Geological Society of America, 1982, 190:283-290. [17] Camoina G F, Gautret P. Microbialites and microbial communities: Biological diversity, iogeochemical functioning, diagenetic processes, tracers of environmental changes[J].Sedimentary Geology, 2006,185:127-130. [18] Dai Yongding, Chen Meng′e, Wang Yao. Development and perspective of research for microbolites[J]. Adcances in Earth Science,1996, 11(2):209-215. [戴永定, 陈孟莪, 王尧. 微生物岩研究的发展与展望[J].地球科学进展, 1996, 11(2):209-215.] [19] Shen J W, Yu C M, Bao H M. A Famennian Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37: 195-210. [20] Shen J W, Teng J B, Pedoja Kevin. Middle and Late Devonian microbial carbonates, reefs and mounds in Guilin, South China and their sequence stratigraphic, paleoenvironmental and paleochimatic significance [J]. Science in China (Series D), 2005, 48(11): 1 900-1 912. [21] Gong Yiming, Xu Ran, Tang Zhongdao, et al. Relationships between bacterial-algal proliferating and mass extinction in the Late Devonian Frasnian-Famennian transition: Enlightening from carbon isotopes and molecular fossils [J]. Science in China(Series D), 2005, 48(2): 140-148.[龚一鸣, 徐冉, 汤中道,等. 晚泥盆世F-F之交菌藻微生物繁荣与集群灭绝的关系: 来自碳同位素和分子化石的启示[J]. 中国科学:D辑, 2005, 48(2): 140-148.] [22] Wang Yongbiao, Tong Jiannan, Wang Jiasheng, et al. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance [J]. Chinese Science Bulletin,2005, 50(7): 665-671. [23] Xie S C, Pancost R D, Yin H F. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J].Nature, 2005, 434; 494-497. [24] Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers,2007, 14(5):222-234.[梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘,2007, 14(5):222-234.] [25] Camoin G F, Gautret P, Montaggioni L F, et al. Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox[J].Sedimentary Geology, 1999, 126:271-304. [26] Teng Jianbin, Shen Jianwei. Microbial carbonates in Holocene beachrocks, Shuiweiling, Luhuitou Peninsula, Hainan Island[J]. Science in China (Series D),2008, 51(1): 30-40. [27] Wang Yue, Shen Jianwei, Long Jiangping. Ecological-sedimentary zonations and carbonate deposition, Xiaodonghai reef flat, Sanya, Hainan Island[J].Science in China (Series D),2011, 54(3): 359-371. [28] Shen Jianwei, Wang Yue. Modern microbialties and their environmental significance, Meiji reef atoll, Nansha (Spratly) Island, South China Sea[J].Science in China(Series D),2008, 51(4): 608-617. [29] Awramik S M, Schopf J W , Walter M A. Filamentous fossil bacteria from the Archean of Western Australia [J].Precambrian Research,1983, 20:357-374. [30] Dupraz C, Strasser A. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains[J].Facies, 1999, 40: 101-130. [31] Schmid D U, Leinfelder R R, Nose M. Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds[J].Sedimentary Geology, 2001, 145: 343-376. [32] Feldman M, MacKenzie J A. Messinian stromatolite-thrombolite associations,Sonta Pola,SE Spain:An analogue for the Palaeozoic?[J]. Sedimentology,1997, 44:893-914. [33] Woo J, Chough S K, Han Z Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (middle Cambrian), Shandong province, China[J]. Palaior, 2008, 23:55-64. [34] Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks [J]. Nature, 1988,333: 313-318. [35] Lowe D R. Stromatolites 3,400-Myr old from the Archean of Western Australia [J].Nature, 1980, 284: 441-443. [36] Sheehan P M, Harris M T. Microbialite resurgence after the late Ordovician extinction [J]. Nature,2004, 430: 75-78. [37] Shinn E A. Worm and algal-built columnar stromatolites in the Persian Gulf [J]. Journal of Sedimentary Research, 1972,42:837-840. [38] Papineau D, Walker J J, Mojzsis S J, et al. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia [J]. Applied and Environmental Microbiology, 2005,71(8):4 822-4 832. [39] Dravis J J. Hardened subtidal stromatolites, Bahamas[J].Science, 1983,219:385-386. [40] Awramik S M. The history and significance of stromatolites[C]∥Schidlowski M, et al, eds. Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin:Springer- Verlag,1992:435-449. [41] Loisy C, Verrecchia E P, Dufour P. Microbial origin for pedogenic micrite associated with a carbonate paleosol (Champagne, France)[J].Sedimentary Geology,1999, 126: 193-204. [42] Teng Jianbin, Shen Jianwei, Jin Chunhua. Relationship between microbial carbonates and hydrocarbon reservoirs [J].Natural Gas Geoscience,2007, 18(4): 522-526.[滕建彬, 沈建伟, 金春花. 微生物碳酸盐地层与油气成藏[J].天然气地球科学, 2007, 18(4): 522-526.] [43] Webb G E. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)?[J].Sedimentology,1996, 43:947-971. [44] Grotzinger J P. Introduction to Precambrian reefs[C]∥Geldsetzer H H J, et al, eds. Reefs, Canada and Adjacent Area. Calgary: Canadian Society of Petroleum Geologisits Memoir,1989,13:9-12. [45] Riding R.Calcified cyanobacteria[C]∥Riding R ed.Calcareous Algae and Stromatolites.Berlin:Springer-Verlag,1991:57-60. [46] Copper P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages[C]∥Kiessling W, Flügel E, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002, 72:181-238. [47] Webb G E. Latest Devonian and Early Carboniferous reefs: Depressed reef building following the middle Paleozoic collapse[C]∥Flügel E, Kiessling W, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002,72:239-269. [48] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2005, 185:229-238. [49] Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China[J].Geology,1999, 27:359-362. [50] Stanley G D. The history of early Mesozoic reef communities: A three-step process[J]. Palaios, 1988,3:170-183. [51] Arenas C,Pomar L. Microbial deposits in upper Miocene carbonates, Mallorca, Spain[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 297(2):465-485. [52] Cabioch G, Camoin G, Webb G E, et al. Contribution of microbialites to the development of coral reefs during the last deglacial period: Case study from Vanuatu 9 South-West Pacific)[J]. Sedimentary Geology,2006, 185:297-318. [53] Rowland S M, Shapiro R S. Reef patters in the cambrian and earliest ordovician[C]∥Flügel E, Kiessling W, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002, 72:239-269. [54] Copper P. Ancient reef ecosystem expansion and collapse[J]. Coral Reefs,1994,13:3-11. [55] Schubert J K, Bottjer D J. Early Triassic stromatolites as post-mass extinction disaster forms[J]. Geology,1992, 20:883-886. [56] Webb G E. Biologically induced carbonate precipitation in reefs through time, Chapter 5[C]∥Stanley G ed. The History and Sedimentology of Ancient Reef Systems: Topics in Geobiology, Vol. 17. New York: Kluwer Academic/Plenum Publishers, 2001:159-203. [57] Yu C M, Shen J W. Devonian Reef Complexes in Guilin, South China[M].Nanjing: Jiangsu Science and Technology Publishing House, 1998. [58] Shen J W, Webb G E. Metazoan-microbial framework fabrics in a Mississippian (Carboniferous) coral-sponge-microbial reef, Monto, Queensland, Australia[J].Sedimentary Geology, 2005, 178(1/2):113-133. [59] Ezaki Y, Liu J B, Adachi N. Earliest triassic microbialite micro- to Megastructures in the Huaying area of Sichuan province, south China: Lmplications for the nature of oceanic conditions after the End-Permian Extinction[J].Palaios,2003, 18:388-402. [60] Shen J W, Xu H L. Microbial carbonates as contributors to upper Permian (Guadalupian-Lopingian) biostromes and reefs in carbonate platform margin setting, Ziyun county, south China[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 218:217-238. [61] Kershaw S, Guo L, Swift A, et al. Microbialites in the Permian-Triassic boundary interval in central China: Structure, age and distribution[J]. Facies,2002, 47:83-90. [62] Shen Jianwei, Webb G E. Famennian (Upper Devonian) calcimicrobial reef at Miaomen, Guilin, Guangxi, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 204: 373-394. [63] Kiessling W, Flügel E, Golonka J. Phanerozoic Reef Patterns[M]. Tulsa: SEPM Special Publication, 2002, 72:775. [64] Fan D L, Hein J R, Ye J. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan province, China[J]. Ore Geology Review, 1999, 15:135-151. [65] Li Yue, Feng Hongzhen, Li Jun. Benthic algae in improvement of ecologic crisis of the Late Ordovician in the west margin of the Yangtze Platform[J]. Acta Palaeontologica Sinica,2002, 41(2):16-23.[李越,冯洪真,李军.底栖藻对扬子地台西缘晚奥陶世生态危机的改善作用[J].古生物学报, 2002, 41(2):16-23.] [66] Golubic S, Seong-Joo L, Browne K M. Cyanobacteria: Architects of sedimentary structures[C]∥Riding R E, Awramik S M, eds. Microbial Sediments. Berlin:Springer,2000:57-67. [67] Golubic S. The continuing importance of cyanobacteria[C]∥Bengstson S ed. Early Life on Earth, Nobel Symposium 84. New York:Columbia University Press, 1994:334-340. [68] Ehrlich H L. How microbe influence mineral growth and dissolution[J]. Chemical Geology, 1996, 132:1-3. [69] Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997,67:378-390. [70] Reid R P, Visscher P T, Decho A W,et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406:989-992. [71] Frederik H, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology, 2002,1(1):3-7. [72] Gautret P, Camoin G, Golubic S,et al.Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau Atoll, French Polynesia[J]. Journal of Sedimentary Research, 2004, 74:462-478. [73] Spilde M N, Boston P J, Schelble R T,et al. Mineral Precipitation by Mn-oxidizing Microbes: Comparing natural and cultured Mn-minerals[C]∥33rd Annual Lunar and Planetary Science Conference, Houston, Texas, abstract no.1 090,2002. [74] Krumbein W F. Photolithotropic and chemiorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Apaba, Sinai)[J]. Geomicrobia,1979,1:139-203. [75] Mancini E A, Llina′ s J C, Parcell W C, et al. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico [J]. AAPG Bulletin, 2004, 88(11):1 573-1 602. [76] Yang Xiaoping, Zhao Wenzhi, Cao Hong, et al. Formation and distribution of Triassic Feixianguan oolitic bank favorable reservoir in the NE Sichuan Basin[J].Petroleum Expoloration and Development,2006, 33(1):17-21.[杨晓萍,赵文智, 曹宏,等. 川东北三叠系飞仙关组鲕滩气藏有利储集层的形成与分布[J]. 石油勘探与开发, 2006, 33(1):17-21.] [77] Zhang Tingshan, Shen Zhaoguo, Lan Guangzhi, et al. Microbial fossils and their biosedimentation and buildup in Paleozoic mud mounds, Sichuan Basin[J]. Acta Sedimentologica Sinica,2002, 20(2):229-237.[张廷山,沈昭国,兰光志,等.四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用[J]. 沉积学报,2002, 20(2):229-237.] [78] Buggisch W, Krumm S. Palaeozoic cold seep carbonates from Europe and North Africa—An integrated isotopic and geochemical approach [J].Facies,2005, 51:566-583. [79] Reitner J. Organomineralization: A clue to the understanding of meteorite-related “bacteria-shaped” carbonate particles[C]∥Seckbach J ed.Origins: Genesis, Evolution and Diversity of Life. Dordrecht, The Netherlands:Kluwer Academic Publishers, 2004:195-212. [80] Campbell K A, Farmer J D, Marais D D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments [J].Geofluids,2002, 2:63-94. [81] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep-Sea Research,1977, 24:857-863. [82] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226:965-967. [83] Miura T, Tsukahara J, Hashimoto J. Lamellibranchia satsuma, a new species of vestimentiferan worms (Annelida: Pogonophora) from a shallow water hydrothermal vent in Kagoshima Bay, Japan [J]. Proceedings of the Biological Society of Washington, 1997, 110:157-162. [84] Bohrmann G, Heeschen K, Jung C,et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin[J]. Terra Nova, 2002, 14:69-79. [85] Fujikura K, Kojima S, Tamaki K,et al. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 deep, in the Japan Trench[J]. Marine Ecology Progress Series, 1999, 190:17-26. [86] Van Dover C L, Humphris S E, Fornari D, et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science, 2001, 294:818-823. [87] Edmonds H N, Michael P J, Baker E T, et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J].Nature, 2003, 421:252-256. [88] Zhu Youhai, Zhang Guangxue, Lu Zhenquan, et al. Gas hydrate in the South China Sea: Background and indicators [J]. Acta Petrolei Sinica,2001, 29(5): 6-10.[祝有海,张光学,卢振权,等.南海天然气水合物成矿条件与找矿前景[J].石油学报,2001, 29(5):6-10.] [89] Chen Zhong, Yan Wen, Chen Muhong, et al. Discovery of seep authigenic carbonate nodules on northern continental slope of South China Sea: New evidence of gas hydrate[J]. Journal of Tropical Oceanography,2006, 51(9):1 065-1 072.[陈忠,颜文,陈木宏,等. 南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据[J]. 科学通报, 2006, 51(9):1 065-1 072.] [90] Han X Q,Erwin S, Huang Y Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249:243-256. [91] Campbella K A, Francisb D A, Collinsa M,et al. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand[J]. Sedimentary Geology, 2008, 204:83-105. [92] Rasmussen B. Filamentous microfossils in a 3235-millionyear-old volcanogenic massive sulfide deposit[J]. Nature, 2000, 405:676-679. [93] Barbieri R, Ori G G, Cavalazzi B. A Silurian cold-seep ecosystem from the Middle Atlas, Morocco[J]. Palaios, 2004, 19:527-542. [94] Mu Xi′nan, Yan Huijun, Li Yue, et al. Temporal and spatial distribution of microbiolitic reefs of middle Cambrian, eastern north China craton[J]. Acta Micropalaeontologica Sinica,2003, 20(3):279-285.[穆西南, 严惠君, 李越,等. 华北地台东部中寒武世微生物礁的时空分布[J].微体古生物学报, 2003 , 20(3):279-285.] [95] Feng Jun, Li Jianghai, Niu Xianglong. The identification of the microbe fossil and its scientific implication[J]. Acta Micropalaeontologica Sinica,2005, 20(2):136-142.[冯军, 李江海, 牛向龙. 热泉微生物化石的识别研究及其科学意义[J]. 微体古生物学报,2005, 20(2):136-142.] [96] Labrenz M, Druschel G K, Tamara T E,et al. Formation of Sphalerite (ZnS) Deposits in natural biofilms of sulfate-reducing Bacteria[J]. Science, 2000, 290:1 744-1 747. [97] Folk R L, Robert H H, Moore C H. Black phytokarst from Hell, Cayman Islands, British West Indies[J].Geological Society of America Bulletin, 1973, 84(7): 2 351-2 360. [98] Viles H A. Biokarst-review and prospect[J].Progress in Physical Geopraphy,1984, 8(4): 523-542. [99] Lei Jiajin, Li Renwei, Tobschall H J, et al. Characteristics of black shale-hosted concretionary phosphates and the mechanisms of microbes mediated phosphorus precipitation in Cambrian Horizon on Yangtze Platform[J]. Science in China (Series D),2000, 30(6):592-601.[雷加锦, 李任伟, Tobschall H J,等. 扬子江地台南缘早寒武世黑色页岩系中形态硫特称及成因意义[J].中国科学:D辑, 2000, 30(6):592-601.] [100] Chen Meng′e, Li Juying, Chen Qiying. The late Sinian microbiolite and its phosphorus enrichment in central Guizhou province[J].Acta Petrologica Sinica,1999,3:446-452. [陈孟莪, 李菊英, 陈其英. 黔中晚震旦世微生物岩及其磷的富集[J].岩石学报,1999,3:446-452.] [101] Ja Rongfen, Li Rongsen, Wei Yangbao. The influence and significance of microbial in the Fe geologic cycle[J]. Geological-Geochemistry,1992, 3:62-69.[贾容芬, 李荣森, 卫杨保.微生物在铁的地质循环中的作用及其意义[J]. 地质地球化学, 1992,3:62-69.] [102] Bian Lizeng, Lin Chengyi, Zhang Fusheng, et al. Pelagic manganese nodules—A new type of concolite[J]. Acta Geologica Sinica, 1996, 70(3):232-236.[边立曾,林承毅,张富生,等.深海锰结核——核形石的新类[J]. 地质学报, 1996, 70(3):232-236.] [103] Leinfelder R, Schmid T, Nose M, et al.Jurrassic Reef Patterns—The Expression of a Changing Globe[M]. Tulsa:SEPM Special Publication, 2002, 72: 465-520. [104] Wu Houbo, Su Xiaobo, Yan Wen. The microbial genesis of submarine gas hydrate and its microbiological indication[J]. Science Scope,2008, 32:396-100.[吴后波, 苏晓波, 颜文. 海底天然气水合物的微生物成因及识别[J] .科学视野, 2008, 32:396-100.] |