地球科学进展 ›› 2011, Vol. 26 ›› Issue (10): 1038 -1049. doi: 10.11867/j.issn.1001-8166.2011.10.1038

综述与评述 上一篇    下一篇

微生物碳酸盐沉积及其研究意义
王月 1,沈建伟 1,杨红强 1,2,王旭 1,2,刘苗苗 1,2   
  1. 1.中国科学院边缘海地质重点实验室,中国科学院南海海洋研究所,广东广州510301;2.中国科学院研究生院,北京100049
  • 收稿日期:2011-07-16 修回日期:2011-08-21 出版日期:2011-10-10
  • 通讯作者: 王月(1982-),女,辽宁葫芦岛人,助理研究员,主要从事海相(洋)碳酸盐沉积研究. E-mail:yuewang@scsio.ac.cn
  • 基金资助:

    国家自然科学基金项目“华南晚泥盆世微生物岩的古气候和古环境意义”(编号: 40872078);中国科学院南海海洋研究所知识创新工程领域前沿项目“南海北部陆坡深水碳酸盐沉积研究”(编号:LYQY200806)资助.

Microbial Carbonates and Its Research Significance

Wang Yue 1, Shen Jianwei 1, Yang Hongqiang 1,2, Wang Xu 1,2, Liu Miaomiao 1,2   

  1. 1.Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou510301, China;
    2.Graduate University of the Chinese Academy of Sciences, Beijing100049, China
  • Received:2011-07-16 Revised:2011-08-21 Online:2011-10-10 Published:2011-10-10

结合国际和国内有关微生物碳酸盐沉积研究的主要成果,归纳微生物碳酸盐沉积的定义、特征、分类和研究范围;探讨微生物碳酸盐沉积在地质时期重大气候和环境变化事件、全新世环境气候变化和恢复以及矿物沉淀、油气成储和天然气水合物示踪等方面的研究和应用意义;并综合微生物碳酸盐沉积建造与油气成藏的关系和最新研究成果,以及微生物碳酸盐目前的研究热点和发展趋势,指出微生物碳酸盐沉积作为微生物活动、碳酸盐沉积和地球化学综合作用的产物是沉积学、古生物学、石油地质学、沉积地球化学、(古)环境学和(古)气候学研究的新的切入点。

This paper clarified the characteristics,  definition,  classification and the research aspects of microbial carbonates, documented the research and application significances of microbial carbonates in major environmental and climatic events, Holocene climate change research and environmental restoration work, as well as in mineral deposition, oil and gas reservoirs, and tracing the hydrate, and further discussed the relationships between microbial carbonate buildups and hydrocarbon reservoirs and latest research achievements on this research field, as well as the research focus and development tendency of microbial carbonates. As a product formed by integrated processes of microbial activities, carbonate sedimentology and geochemistry, microbial carbonates could be a new intersection for sedimentological, paleontological, petroleum geological, sedimentary geochemical, paleoenvironmental and paleoclimatic studies.

中图分类号: 

[1] Riding R. Microbial carbonate: The geological record of calcified bacterial-algal mats and biolfilms[J].Sedimentology, 2000, 47: 179-214.
[2] Fowle D A, Roberts J A, Fortin D, et al. The evolution of geomicrobiology: Perspectives from the mineral-bacteria interface[J].Geobiology,2007, 5:207-210.
[3] Warren L A, Kauffman M E. Microbial geoengineers[J].Science,2003, 299: 1 027-1 029.
[4] Sorby H C. On the structure and origin of limestones[C]Anniversary Address of the President. Geological Society of London, 1879,35: 39-95.
[5] Kalkowsky E. Oolith und Stromatolith in norddeutschen Buntsandstein[J].Zeitschrift der Deutschen  Geologischen Gesellschaft,1908, 60: 68-125.
[6] Aitken J D. Classification and environmental significance of crytalgal limestones and dolomites, with illustration from Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Petrology,1967, 37: 1 163-1 178.
[7] Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2: 241-254.
[8] Riding R. Classification of microbial carbonates[C]Riding R ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 1991:21-51.
[9] Reitner J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia)—Formation and concepts[J].Facies, 1993, 29: 3-40.
[10] Delgado O, Lapointe B E. Nutrient-limited productivity of calcareous versus fleshy macroalgea in a eutrophic, carbonate-rich tropical marine environment[J]. Coral Reefs, 1994, 13(3): 151-159.
[11] Feldmann M, McKenzie J A. Stormatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas[J]. Palaios,1998, 13: 201-212.
[12] Sprachta S, Camoin G, Golubic S,et al. Microbialites in a modern lagoonal environment: Nature and distribution, Tikehau atoll (French Polynesia) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,175:103-124.
[13] Webb G E, Baker J C, Jell J S. Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia[J].Geology,1998, 26:355-358.
[14] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64:1 557-1 565.
[15] Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from Upper Devonian, Alberta basin, Canada[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,181:127-151.
[16] Sepkoski   Jr J. Mass extinctions in the Phanerozoic oceans: A review[C]Silver L T, Schultz P H, eds. Geological Inplications of the Impact of large Asteroids and Coments on the Earth. Special Papers of Geological Society of America, 1982, 190:283-290.
[17] Camoina G F, Gautret P. Microbialites and microbial communities: Biological diversity, iogeochemical functioning, diagenetic processes, tracers of environmental changes[J].Sedimentary Geology, 2006,185:127-130.
[18] Dai Yongding, Chen Meng′e, Wang Yao. Development and perspective of research for microbolites[J]. Adcances  in Earth Science,1996, 11(2):209-215. [戴永定, 陈孟莪, 王尧. 微生物岩研究的发展与展望[J].地球科学进展, 1996, 11(2):209-215.]
[19] Shen J W, Yu C M, Bao H M. A Famennian Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37: 195-210.
[20] Shen J W, Teng J B, Pedoja Kevin. Middle and Late Devonian microbial carbonates, reefs and mounds in Guilin, South China and their sequence stratigraphic, paleoenvironmental and paleochimatic significance [J]. Science in China (Series D), 2005, 48(11): 1 900-1 912.
[21] Gong Yiming, Xu Ran, Tang Zhongdao, et al. Relationships between bacterial-algal proliferating and mass extinction in the Late Devonian Frasnian-Famennian transition: Enlightening from carbon isotopes and molecular fossils [J]. Science in China(Series D), 2005, 48(2): 140-148.[龚一鸣, 徐冉, 汤中道,等. 晚泥盆世F-F之交菌藻微生物繁荣与集群灭绝的关系: 来自碳同位素和分子化石的启示[J]. 中国科学:D辑, 2005, 48(2): 140-148.]
[22] Wang Yongbiao, Tong Jiannan, Wang Jiasheng, et al. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance [J]. Chinese Science Bulletin,2005, 50(7): 665-671.
[23] Xie S C, Pancost R D, Yin H F. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J].Nature, 2005, 434; 494-497.
[24] Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers,2007, 14(5):222-234.[梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘,2007, 14(5):222-234.]
[25] Camoin G F, Gautret P, Montaggioni L F, et al. Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox[J].Sedimentary Geology, 1999, 126:271-304.
[26] Teng Jianbin, Shen Jianwei. Microbial carbonates in Holocene beachrocks, Shuiweiling, Luhuitou Peninsula, Hainan Island[J]. Science in China (Series D),2008, 51(1): 30-40.
[27] Wang Yue, Shen Jianwei, Long Jiangping. Ecological-sedimentary zonations and carbonate deposition, Xiaodonghai reef flat, Sanya, Hainan Island[J].Science in China (Series D),2011, 54(3): 359-371.
[28] Shen Jianwei, Wang Yue. Modern microbialties and their environmental significance, Meiji reef atoll, Nansha (Spratly) Island, South China Sea[J].Science in China(Series D),2008, 51(4): 608-617.
[29] Awramik S M, Schopf J W , Walter M A. Filamentous fossil bacteria from the Archean of Western Australia [J].Precambrian Research,1983, 20:357-374.
[30] Dupraz C, Strasser A. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains[J].Facies, 1999, 40: 101-130.
[31] Schmid D U, Leinfelder R R, Nose M. Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds[J].Sedimentary Geology, 2001, 145: 343-376.
[32] Feldman M, MacKenzie J A. Messinian stromatolite-thrombolite associations,Sonta Pola,SE Spain:An analogue for the Palaeozoic?[J]. Sedimentology,1997, 44:893-914.
[33] Woo J, Chough S K, Han Z Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (middle Cambrian), Shandong province, China[J]. Palaior, 2008, 23:55-64.
[34] Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks [J]. Nature, 1988,333: 313-318.
[35] Lowe D R. Stromatolites 3,400-Myr old from the Archean of Western Australia [J].Nature, 1980, 284: 441-443.
[36] Sheehan P M, Harris M T. Microbialite resurgence after the late Ordovician extinction [J]. Nature,2004, 430: 75-78.
[37] Shinn E A. Worm and algal-built columnar stromatolites in the Persian Gulf [J]. Journal of Sedimentary Research, 1972,42:837-840.
[38] Papineau D, Walker J J, Mojzsis S J, et al. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia [J]. Applied and Environmental Microbiology, 2005,71(8):4 822-4 832.
[39] Dravis J J. Hardened subtidal stromatolites, Bahamas[J].Science, 1983,219:385-386.
[40] Awramik S M. The history and significance of stromatolites[C]Schidlowski M, et al, eds. Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin:Springer- Verlag,1992:435-449.
[41] Loisy C, Verrecchia E P, Dufour P. Microbial origin for pedogenic micrite associated with a carbonate paleosol (Champagne, France)[J].Sedimentary Geology,1999, 126: 193-204.
[42] Teng Jianbin, Shen Jianwei, Jin Chunhua. Relationship between microbial carbonates and hydrocarbon reservoirs [J].Natural Gas Geoscience,2007, 18(4): 522-526.[滕建彬, 沈建伟, 金春花. 微生物碳酸盐地层与油气成藏[J].天然气地球科学, 2007, 18(4): 522-526.]
[43] Webb G E. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)?[J].Sedimentology,1996, 43:947-971.
[44] Grotzinger J P. Introduction to Precambrian reefs[C]Geldsetzer H H J, et al, eds. Reefs, Canada and Adjacent Area. Calgary: Canadian Society of Petroleum Geologisits Memoir,1989,13:9-12.
[45] Riding R.Calcified cyanobacteria[C]Riding R ed.Calcareous Algae and Stromatolites.Berlin:Springer-Verlag,1991:57-60.
[46] Copper P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages[C]Kiessling W, Flügel E, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002, 72:181-238.
[47] Webb G E. Latest Devonian and Early Carboniferous reefs: Depressed reef building following the middle Paleozoic collapse[C]Flügel E, Kiessling W, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002,72:239-269.
[48] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2005, 185:229-238.
[49] Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China[J].Geology,1999, 27:359-362.
[50] Stanley G D. The history of early Mesozoic reef communities: A three-step process[J]. Palaios, 1988,3:170-183.
[51] Arenas C,Pomar L. Microbial deposits in upper Miocene carbonates, Mallorca, Spain[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 297(2):465-485.
[52] Cabioch G, Camoin G, Webb G E, et al. Contribution of microbialites to the development of coral reefs during the last deglacial period: Case study from Vanuatu 9 South-West Pacific)[J]. Sedimentary Geology,2006, 185:297-318.
[53] Rowland S M, Shapiro R S. Reef patters in the cambrian and earliest ordovician[C]Flügel E, Kiessling W, Golonka J, eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication, 2002, 72:239-269.
[54] Copper P. Ancient reef ecosystem expansion and collapse[J]. Coral Reefs,1994,13:3-11.
[55] Schubert J K, Bottjer D J. Early Triassic stromatolites as post-mass extinction disaster forms[J]. Geology,1992, 20:883-886.
[56] Webb G E. Biologically induced carbonate precipitation in reefs through time, Chapter 5[C]Stanley G ed. The History and Sedimentology of Ancient Reef Systems: Topics in Geobiology, Vol. 17. New York: Kluwer Academic/Plenum Publishers, 2001:159-203.
[57] Yu C M,  Shen J W. Devonian Reef Complexes in Guilin, South China[M].Nanjing: Jiangsu Science and Technology Publishing House, 1998.
[58] Shen J W, Webb G E. Metazoan-microbial framework fabrics in a Mississippian (Carboniferous) coral-sponge-microbial reef, Monto, Queensland, Australia[J].Sedimentary Geology, 2005, 178(1/2):113-133.
[59] Ezaki Y, Liu J B, Adachi N. Earliest triassic microbialite micro- to Megastructures in the Huaying area of Sichuan province, south China: Lmplications for the nature of oceanic conditions after the End-Permian Extinction[J].Palaios,2003, 18:388-402.
[60] Shen J W, Xu H L. Microbial carbonates as contributors to upper Permian (Guadalupian-Lopingian) biostromes and reefs in carbonate platform margin setting, Ziyun county, south China[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 218:217-238.
[61] Kershaw S, Guo L, Swift A, et al. Microbialites in the Permian-Triassic boundary interval in central China: Structure, age and distribution[J]. Facies,2002, 47:83-90.
[62] Shen Jianwei, Webb G E. Famennian (Upper Devonian) calcimicrobial reef at Miaomen, Guilin, Guangxi, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 204: 373-394.
[63] Kiessling W, Flügel E, Golonka J. Phanerozoic Reef Patterns[M]. Tulsa: SEPM Special Publication, 2002, 72:775.
[64] Fan D L, Hein J R, Ye J. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan province, China[J]. Ore Geology Review, 1999, 15:135-151.
[65] Li Yue, Feng Hongzhen, Li Jun. Benthic algae in improvement of ecologic crisis of the Late Ordovician in the west margin of the Yangtze Platform[J]. Acta Palaeontologica Sinica,2002, 41(2):16-23.[李越,冯洪真,李军.底栖藻对扬子地台西缘晚奥陶世生态危机的改善作用[J].古生物学报, 2002, 41(2):16-23.]
[66] Golubic S, Seong-Joo L, Browne K M. Cyanobacteria: Architects of sedimentary structures[C]Riding R E, Awramik S M, eds. Microbial Sediments. Berlin:Springer,2000:57-67.
[67] Golubic S. The continuing importance of cyanobacteria[C]Bengstson S ed. Early Life on Earth, Nobel Symposium 84. New York:Columbia University Press, 1994:334-340.
[68] Ehrlich H L. How microbe influence mineral growth and dissolution[J]. Chemical Geology, 1996, 132:1-3.
[69] Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997,67:378-390.
[70] Reid R P, Visscher P T, Decho A W,et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406:989-992.
[71] Frederik H, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology, 2002,1(1):3-7.
[72] Gautret P, Camoin G, Golubic S,et al.Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau Atoll, French Polynesia[J]. Journal of Sedimentary Research, 2004, 74:462-478.
[73] Spilde M N, Boston P J, Schelble R T,et al. Mineral Precipitation by Mn-oxidizing Microbes: Comparing natural and cultured Mn-minerals[C]33rd Annual Lunar and Planetary Science Conference, Houston, Texas, abstract no.1 090,2002.
[74] Krumbein W F. Photolithotropic and chemiorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Apaba, Sinai)[J]. Geomicrobia,1979,1:139-203.
[75] Mancini E A, Llina′ s J C, Parcell W C, et al. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico [J]. AAPG Bulletin, 2004, 88(11):1 573-1 602.
[76] Yang Xiaoping, Zhao Wenzhi, Cao Hong, et al. Formation and distribution of Triassic Feixianguan oolitic bank favorable reservoir in the NE Sichuan Basin[J].Petroleum Expoloration and Development,2006, 33(1):17-21.[杨晓萍,赵文智, 曹宏,等. 川东北三叠系飞仙关组鲕滩气藏有利储集层的形成与分布[J]. 石油勘探与开发, 2006, 33(1):17-21.]
[77] Zhang Tingshan, Shen Zhaoguo, Lan Guangzhi, et al. Microbial fossils and their biosedimentation and buildup in Paleozoic mud mounds, Sichuan Basin[J]. Acta Sedimentologica Sinica,2002, 20(2):229-237.[张廷山,沈昭国,兰光志,等.四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用[J]. 沉积学报,2002, 20(2):229-237.]
[78] Buggisch W, Krumm S. Palaeozoic cold seep carbonates from Europe and North Africa—An integrated isotopic and geochemical approach [J].Facies,2005, 51:566-583.
[79] Reitner J. Organomineralization: A clue to the understanding of meteorite-related “bacteria-shaped” carbonate particles[C]Seckbach J ed.Origins: Genesis, Evolution and Diversity of Life. Dordrecht, The Netherlands:Kluwer Academic Publishers, 2004:195-212.
[80] Campbell K A, Farmer J D, Marais D D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments [J].Geofluids,2002, 2:63-94.
[81] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep-Sea Research,1977, 24:857-863.
[82] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226:965-967.
[83] Miura T, Tsukahara J, Hashimoto J. Lamellibranchia satsuma, a new species of vestimentiferan worms (Annelida: Pogonophora) from a shallow water hydrothermal vent in Kagoshima Bay, Japan [J]. Proceedings of the Biological Society of Washington, 1997, 110:157-162.
[84] Bohrmann G, Heeschen K, Jung C,et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin[J]. Terra Nova, 2002, 14:69-79.
[85] Fujikura K, Kojima S, Tamaki K,et al. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 deep, in the Japan Trench[J]. Marine Ecology Progress Series, 1999, 190:17-26.
[86] Van Dover C L, Humphris S E, Fornari D, et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science, 2001, 294:818-823.
[87] Edmonds H N, Michael P J, Baker E T, et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J].Nature, 2003, 421:252-256.
[88] Zhu Youhai, Zhang Guangxue, Lu Zhenquan, et al. Gas hydrate in the South China Sea: Background and indicators [J]. Acta Petrolei Sinica,2001, 29(5): 6-10.[祝有海,张光学,卢振权,等.南海天然气水合物成矿条件与找矿前景[J].石油学报,2001, 29(5):6-10.]
[89] Chen Zhong, Yan Wen, Chen Muhong, et al. Discovery of seep authigenic carbonate nodules on northern continental slope of South China Sea: New evidence of gas hydrate[J]. Journal of Tropical Oceanography,2006, 51(9):1 065-1 072.[陈忠,颜文,陈木宏,等. 南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据[J]. 科学通报, 2006, 51(9):1 065-1 072.]
[90] Han X Q,Erwin S, Huang Y Y,  et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249:243-256.
[91] Campbella K A, Francisb D A, Collinsa M,et al. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand[J]. Sedimentary Geology, 2008, 204:83-105.
[92] Rasmussen B. Filamentous microfossils in a 3235-millionyear-old volcanogenic massive sulfide deposit[J]. Nature, 2000, 405:676-679.
[93] Barbieri R, Ori G G, Cavalazzi B. A Silurian cold-seep ecosystem from the Middle Atlas, Morocco[J]. Palaios, 2004, 19:527-542.
[94] Mu Xi′nan, Yan Huijun, Li Yue, et al. Temporal and spatial distribution of microbiolitic reefs of middle Cambrian, eastern north China craton[J]. Acta Micropalaeontologica Sinica,2003, 20(3):279-285.[穆西南, 严惠君, 李越,等. 华北地台东部中寒武世微生物礁的时空分布[J].微体古生物学报, 2003 , 20(3):279-285.]
[95] Feng Jun, Li Jianghai, Niu Xianglong. The identification of the microbe fossil and its scientific implication[J]. Acta Micropalaeontologica Sinica,2005, 20(2):136-142.[冯军, 李江海, 牛向龙. 热泉微生物化石的识别研究及其科学意义[J]. 微体古生物学报,2005, 20(2):136-142.]
[96] Labrenz M, Druschel G K, Tamara T E,et al. Formation of Sphalerite (ZnS) Deposits in natural biofilms of sulfate-reducing Bacteria[J]. Science, 2000, 290:1 744-1 747.
[97] Folk R L, Robert H H, Moore C H. Black phytokarst from Hell, Cayman Islands, British West Indies[J].Geological Society of America Bulletin, 1973, 84(7): 2 351-2 360.
[98] Viles H A. Biokarst-review and prospect[J].Progress in Physical Geopraphy,1984, 8(4): 523-542.
[99] Lei Jiajin, Li Renwei, Tobschall H J, et al. Characteristics of black shale-hosted concretionary phosphates and the mechanisms of microbes mediated phosphorus precipitation in Cambrian Horizon on Yangtze Platform[J]. Science in China (Series D),2000, 30(6):592-601.[雷加锦, 李任伟, Tobschall H J,等. 扬子江地台南缘早寒武世黑色页岩系中形态硫特称及成因意义[J].中国科学:D辑, 2000, 30(6):592-601.]
[100] Chen Meng′e, Li Juying, Chen Qiying. The late Sinian microbiolite and its phosphorus enrichment in central Guizhou province[J].Acta Petrologica Sinica,1999,3:446-452. [陈孟莪, 李菊英, 陈其英. 黔中晚震旦世微生物岩及其磷的富集[J].岩石学报,1999,3:446-452.]
[101] Ja Rongfen, Li Rongsen, Wei Yangbao. The influence and significance of microbial in the Fe geologic cycle[J]. Geological-Geochemistry,1992, 3:62-69.[贾容芬, 李荣森, 卫杨保.微生物在铁的地质循环中的作用及其意义[J]. 地质地球化学, 1992,3:62-69.]
[102] Bian Lizeng, Lin Chengyi, Zhang Fusheng, et al. Pelagic manganese nodules—A new type of concolite[J]. Acta Geologica Sinica, 1996, 70(3):232-236.[边立曾,林承毅,张富生,等.深海锰结核——核形石的新类[J]. 地质学报, 1996, 70(3):232-236.]
[103] Leinfelder R, Schmid T, Nose M, et al.Jurrassic Reef Patterns—The Expression of a Changing Globe[M]. Tulsa:SEPM Special Publication, 2002, 72: 465-520.
[104] Wu Houbo, Su Xiaobo, Yan Wen. The microbial genesis of submarine gas hydrate and its microbiological indication[J]. Science Scope,2008, 32:396-100.[吴后波, 苏晓波, 颜文. 海底天然气水合物的微生物成因及识别[J] .科学视野, 2008, 32:396-100.]

[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[5] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[6] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[7] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[8] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[9] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[10] 吴成平,于长春,王卫平,马勋表,范正国,朱宏伟. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10): 1099-1107.
[11] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[12] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[13] 邓浩俊, 陶贞, 高全洲, 姚玲, 冯雍, 李银花. 河流筑坝对生源物质循环的改变研究进展 *[J]. 地球科学进展, 2018, 33(12): 1237-1247.
[14] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[15] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
阅读次数
全文


摘要