1 |
Feng Shizuo, Li Fengqi, Li Shaoqing. An Inctroduction to Marine Science [M]. Beijing: Higher Education Press, 1999.
|
|
冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999.
|
2 |
Rhines P B. Mesoscale eddies [M]// Cochran J K, Bokuniewicz H, Yager P. Encyclopedia of Ocean Sciences(3rd Edition). London:Academic Press,2019.
|
3 |
Swallow J C. Some further deep current measurements using neutrally-buoyant floats [J]. Deep Sea Research, 1957, 4: 93-104.
|
4 |
Crease J. Velocity measurements in the deep water of the western North Atlantic: Summary [J]. Journal of Geophysical Research, 1962, 67(8): 3 173-3 176.
|
5 |
Group M. The mid-ocean dynamics experiment [J]. Deep Sea Research, 1978, 25(10): 859-910.
|
6 |
Brekhovskikh L, Fedorov K, Fomin L, et al. Large-scale multi-buoy experiment in the tropical Atlantic [C]//Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1971.
|
7 |
Mcgillicuddy Jr D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale [J]. Annual Review of Marine Science, 2016, 8:125-159.
|
8 |
Wolfe C L, Cessi P, Mcclean J L, et al. Vertical heat transport in eddying ocean models [J]. Geophysical Research Letters, 2008, 35: L23605. DOI:10.1029/2008GL036138.
doi: 10.1029/2008GL036138
|
9 |
Fu L-L, Chelton D B, Le Traon P-Y, et al. Eddy dynamics from satellite altimetry [J]. Oceanography, 2010, 23(4): 14-25.
|
10 |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies [J]. Progress in Oceanography, 2011, 91(2): 167-216.
|
11 |
Mason E, Pascual A, Mcwilliams J C. A new sea surface height-Based code for oceanic mesoscale eddy tracking [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1 181-1 188.
|
12 |
Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from altimetric maps [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772-778.
|
13 |
Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences [C]// Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1970.
|
14 |
Weiss L A. Bankruptcy resolution: Direct costs and violation of priority of claims [J]. Journal of Financial Economics, 1990, 27(2): 285-314.
|
15 |
Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies [J]. Geophysical Research Letters, 2007, 34: L15606. DOI:10.1029/2007GL030812.
doi: 10.1029/2007GL030812
|
16 |
Robinson S K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639.
|
17 |
Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns [J]. Progress in Oceanography, 2008, 79(2/4): 106-119.
|
18 |
Nencioli F, Dong C, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579.
|
19 |
Dong Changming, Jiang Xingliang, Xu Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application [J]. Advances in Marine Science, 2017, 35(4): 439-453.
|
|
董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法, 涡旋数据库及其应用 [J]. 海洋科学进展, 2017, 35(4): 439-453.
|
20 |
Lumpkin R, Pazos M. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results [M]// Griffa A, Kirwan A D, Mariano A, et al. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Chapter: 2. Cambridge:Cambridge University Press, 2007.
|
21 |
Dong C, Liu Y, Lumpkin R, et al. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio extension region [J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1 167-1 176.
|
22 |
Dong Changming. Oceanic Eddy Detection and Analysis [M]. Beijing: Science Press, 2015.
|
|
董昌明. 海洋涡旋探测与分析 [M]. 北京: 科学出版社, 2015.
|
23 |
Chelton D B, Schlax M G. Global observations of oceanic Rossby waves [J]. Science, 1996, 272(5 259): 234.
|
24 |
Zhang Yongchui, Zhang Lifeng. Rossby waves in the North Pacific Ocean: A review [J]. Advances in Earth Science, 2009, 24(11): 1 219-1 228.
|
|
张永垂, 张立凤. 北太平洋 Rossby 波研究进展 [J]. 地球科学进展, 2009, 24(11): 1 219-1 228.
|
25 |
Mcgillicuddy Jr D J, Robinson A, Siegel D, et al. Influence of mesoscale eddies on new production in the Sargasso Sea [J]. Nature, 1998, 394(6 690): 263.
|
26 |
Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll [J]. Science, 2011, 334(6 054): 328-332.
|
27 |
Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies [J]. Science, 2014, 345(6 194): 322-324.
|
28 |
Dong C M, Mcwilliams J C, Liu Y, et al. Global heat and salt transports by eddy movement [J]. Nature Communications, 2014, 5:3294.
|
29 |
Nof D. On the β-induced movement of isolated baroclinic eddies [J]. Journal of Physical Oceanography, 1981, 11(12): 1 662-1 672.
|
30 |
Cushman-Roisin B, Tang B, Chassignet E P. Westward motion of mesoscale eddies [J]. Journal of Physical Oceanography, 1990, 20(5): 758-768.
|
31 |
Bretherton F. Reminiscences of MODE [M]// Physical Oceanography. New York: Springer, 2006: 15-27.
|
32 |
Robinson A R, Leslie W G. Estimation and prediction of oceanic eddy fields [J]. Progress in Oceanography, 1985, 14: 485-510.
|
33 |
Steinberg D K, Carlson C A, Bates N R, et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(8/9): 1 405-1 447.
|
34 |
Flierl G, Mcgillicuddy D J. Mesoscale and submesoscale physical-biological interactions [J]. The Sea, 2002, 12: 113-185.
|
35 |
Mcgillicuddy D J, Anderson L A, Bates N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms [J]. Science, 2007, 316(5 827): 1 021-1 026.
|
36 |
Dong C, Lin X, Liu Y, et al. Three‐dimensional oceanic eddy analysis in the Southern California Bight from a numerical product [J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C00H14. DOI:10.1029/2011JC007354.
doi: 10.1029/2011JC007354
|
37 |
Hu J, Gan J, Sun Z, et al. Observed three‐dimensional structure of a cold eddy in the southwestern South China Sea [J]. Journal of Geophysical Research: Oceans, 2011, 116: C05016. DOI:10.1029/2010JC006810.
doi: 10.1029/2010JC006810
|
38 |
Holte J, Straneo F, Moffat C, et al. Structure and surface properties of eddies in the southeast Pacific Ocean [J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2 295-2 309.
|
39 |
Kurczyn J, Beier E, Lavín M, et al. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical‐subtropical transition zone [J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5 931-5 950.
|
40 |
Mao H, Feng M, Phillips H E, et al. Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 161: 52-62.
|
41 |
Zhang Y, Chen X, Dong C. Anatomy of a cyclonic eddy in the kuroshio extension based on high-resolution observations [J]. Atmosphere, 2019, 10(9): 553.
|
42 |
Roemmich D, Johnson G C, Riser S, et al. The Argo program: Observing the global ocean with profiling floats [J]. Oceanography, 2009, 22(2): 34-43.
|
43 |
Sun Wenjin. Oceanic Eddies in the Kuroshio Extension Region and Eddy Induced Dual Mixing [D]. Nanjing: Hohai University, 2017.
|
|
孙文金. 黑潮延续体区域伴随涡旋的垂向分布及涡致双重混合[D]. 南京:河海大学,2017.
|
44 |
Sun W, Dong C, Wang R, et al. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region [J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 476-1 496.
|
45 |
Dong D, Brandt P, Chang P, et al. Mesoscale eddies in the Northwestern Pacific Ocean: Three‐dimensional eddy structures and heat/salt transports [J]. Journal of Geophysical Research: Oceans, 2017, 122. DOI: 10.1002/2017JC013303.
doi: 10.1002/2017JC013303
|
46 |
Yang G, Wang F, Li Y, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures [J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 906-1 925.
|
47 |
Wang Ru, Li Haiyan, Meng Lei. Mesoscale eddies energy characteristic in the Kuroshio Extension and north Pacific subtropical countercurrent region [J]. Acta Oceanologica Sinica, 2019, 41(11): 1-14.
|
|
王茹, 李海艳, 孟雷. 北太平洋黑潮延伸体区域和副热带逆流区域中尺度涡能量特征研究[J]. 海洋学报, 2019, 41(11): 1-14.
|
48 |
Keppler L, Cravatte S, Chaigneau A, et al. Observed characteristics and vertical structure of mesoscale eddies in the Southwest Tropical Pacific [J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2 731-2 756.
|
49 |
Chaigneau A, Le Texier M, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats [J]. Journal of Geophysical Research, 2011, 116(C11): C11025. DOI:10.1029/2011JC007134.
doi: 10.1029/2011JC007134
|
50 |
Castelao R M. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream recirculation region: Vertical structure [J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2 048-2 065.
|
51 |
Mason E, Pascual A, Gaube P, et al. Subregional characterization of mesoscale eddies across the Brazil‐Malvinas Confluence [J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3 329-3 357.
|
52 |
Amores A, Melnichenko O, Maximenko N. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 23-41.
|
53 |
Dilmahamod A, Aguiar‐González B, Penven P, et al. SIDDIES Corridor: A major east‐west pathway of long‐lived surface and subsurface eddies crossing the subtropical south Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5 406-5 425.
|
54 |
Yang G, Yu W, Yuan Y, et al. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6 733-6 750.
|
55 |
Frenger I, Münnich M, Gruber N, et al. Southern Ocean eddy phenomenology [J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 413-7 449.
|
56 |
Zhen Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea [J]. Advances in Marine Science, 2017, 35(2): 131-158.
|
|
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131-158.
|
57 |
He Q, Zhan H, Cai S, et al. A new assessment of mesoscale eddies in the South China Sea: Surface features, three‐dimensional structures, and thermohaline transports [J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4 906-4 929.
|
58 |
Xie Xudan, Wang Jing, Chu Xiaoqing, et al. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea [J]. Haiyang Xuebao, 2018, 40(4): 1-14.
|
|
谢旭丹, 王静, 储小青, 等.南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1-14.
|
59 |
De Marez C, L’Hégaret P, Morvan M, et al. On the 3D structure of eddies in the Arabian Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 150. DOI: 10.1016/j.dsr.2019.06.003.
doi: 10.1016/j.dsr.2019.06.003
|
60 |
Hassanzadeh P, Marcus P S, Le Gal P. The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation [J]. Journal of Fluid Mechanics, 2012, 706: 46-57.
|
61 |
Liu Z, Liao G, Hu X, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean [J]. Journal of Geophysical Research: Oceans, 2019: e2019JC015555. DOI: 10.1029/2019JC015555.
doi: 10.1029/2019JC015555
|
62 |
Zheng Congcong, Yin Zhonghui, Liang Yongchun, et al. Analysis of the eddy vertical structure in different areas in the North Pacific [J]. Marine Forecasts, 2017, 34(3): 10-16.
|
|
郑聪聪, 訚忠辉, 梁永春, 等.北太平洋中尺度涡温度垂直结构区域差别分析[J]. 海洋预报, 2017, 34(3): 10-16.
|
63 |
Zhang Z, Tian J, Qiu B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea [J]. Scientific Reports, 2016, 6(1): 24349.
|
64 |
Smith K S. The geography of linear baroclinic instability in Earth's oceans [J]. Journal of Marine Research, 2007, 65(5): 655-683.
|
65 |
Early J J, Samelson R, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies [J]. Journal of Physical Oceanography, 2011, 41(8): 1 535-1 555.
|
66 |
Zhai X, Johnson H L, Marshall D P. Significant sink of ocean-eddy energy near western boundaries [J]. Nature Geoscience, 2010, 3(9): 608-612.
|
67 |
Renault L, Marchesiello P, Masson S, et al. Remarkable control of western boundary currents by eddy killing, a mechanical air‐sea coupling process [J]. Geophysical Research Letters, 2019, 46(5): 2 743-2 751.
|
68 |
Von Storch J-S, Badin G, Oliver M. The interior energy pathway: Inertia-gravity wave emission by oceanic flows [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 53-85.
|
69 |
Danilov S, Juricke S, Kutsenko A, et al. Toward consistent subgrid momentum closures in ocean models [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 145-192.
|
70 |
Wang Meng, Zhang Yanwei, Liu Zhifei, et al. Temporal and spatial characteristics of mesoscale eddies in the Northern South China Sea: Statistics analysis based on altimeter data[J]. Advances in Earth Science, 2019, 34(10): 1 069-1 080.
|
|
王萌,张艳伟,刘志飞,等. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1 069-1 080.
|
71 |
Lutjeharms J, Gordon A. Shedding of an Agulhas ring observed at sea [J]. Nature, 1987, 325(6 100): 138.
|
72 |
Zhang Z, Zhao W, Qiu B, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea [J]. Journal of Physical Oceanography, 2017, 47(6): 1 243-1 259.
|
73 |
Bower A S, Rossby H T. Meddies and Sub-Surface Eddies [M]// Encyclopedia of Ocean Sciences. London UK: Academic Press,2018:107-114.
|
74 |
Price J F, Baringer M O N, Lueck R G, et al. Mediterranean outflow mixing and dynamics [J]. Science, 1993, 259(5 099): 1 277-1 282.
|
75 |
Garfield N, Collins C A, Paquette R G, et al. Lagrangian exploration of the California Undercurrent, 1992-95 [J]. Journal of Physical Oceanography, 1999, 29(4): 560-583.
|
76 |
Nof D, Paldor N, Van Gorder S. The reddy maker [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(9): 1 531-1 549.
|
77 |
Mahadevan A. Submesoscale processes [M]// Encyclopedia of Ocean Sciences, 2018. DOI: 10.1016/B978-0-12-409548-9.10828-0.
doi: 10.1016/B978-0-12-409548-9.10828-0
|
78 |
Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics [J]. Ocean modeling in an Eddying Regime, 2008, (17). DOI:10.1029/177GM04.
doi: 10.1029/177GM04
|
79 |
Mcwilliams J C. Submesoscale currents in the ocean [J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 2016, 472(2 189). DOI:10.1098/rspa.2016.0117
doi: 10.1098/rspa.2016.0117
|
80 |
Morrow R, Fu L-L, Ardhuin F, et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) Mission [J]. Frontiers in Marine Science, 2019. DOI: 10.3389/fmars.2019.00232.
doi: 10.3389/fmars.2019.00232
|
81 |
Zhang Y, Dong C, Chen X, et al. Observation of submesoscale turbulence in a cyclonic eddy [J]. Ocean Dynamics, 2020,70:513-520.
|
82 |
Whalen C, Mackinnon J, Talley L. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves [J]. Nature Geoscience, 2018, 11(11): 842.
|
83 |
Kunze E. Near-inertial wave propagation in geostrophic shear [J]. Journal of Physical Oceanography, 1985, 15(5): 544-565.
|
84 |
Pegliasco C, Chaigneau A, Morrow R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems [J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6 008-6 033.
|
85 |
Levin L A, Bett B J, Gates A R, et al. Global observing needs in the deep ocean [J]. Frontiers in Marine Science, 2019, 241. DOI: 10.3389/fmars.2019.00241.
doi: 10.3389/fmars.2019.00241
|
86 |
Rudnick D L. Ocean research enabled by underwater gliders [J]. Annual Review of Marine Science, 2016, 8: 519-541.
|
87 |
Testor P, Deyoung B, Rudnick D L, et al. OceanGliders: A component of the integrated GOOS [J]. Frontiers in Marine Science, 2019, 6. DOI: 10.3389/fmars.2019.00422.
doi: 10.3389/fmars.2019.00422
|
88 |
Shu Y, Chen J, Li S, et al. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017 [J]. Science China Earth Sciences, 2019, 62(2): 451-458.
|
89 |
Shu Y, Xiu P, Xue H, et al. Glider-observed anticyclonic eddy in northern South China Sea [J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233-241.
|
90 |
Braun C D, Gaube P, Sinclair-Taylor T H, et al. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone [J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17 187-17 192.
|
91 |
Mahadevan A, D’Asaro E, Lee C, et al. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms [J]. Science, 2012, 337(6 090): 54-58.
|
92 |
Li Weibiao, Liu Haoya, Fang Rong. Review of the atmospheric response to the ocean mesoscale eddies [J]. Advances in Earth Science, 2017, 32(10): 1 039-1 049.
|
|
黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展 [J]. 地球科学进展, 2017, 32(10): 1 039-1 049.
|
93 |
Zhong Chao, Xiao Wupeng, Huang Bangqin. The response of phytoplankton to mesoscale eddies in Western South China Sea [J]. Advances in Marine Science, 2013, 31(2): 213-220.
|
|
钟超, 肖武鹏, 黄邦钦. 中国南海西部浮游植物对中尺度涡的响应 [J]. 海洋科学进展, 2013, 31(2): 213-220.
|