地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 523 -530. doi: 10.11867/j.issn.1001-8166.2014.04.0523

研究论文 上一篇    下一篇

黑潮源区海流季节内变化观测分析
段静, 陈朝晖, 吴立新   
  1. 中国海洋大学物理海洋教育部重点实验室, 山东 青岛 266003
  • 收稿日期:2013-12-02 出版日期:2014-04-10
  • 基金资助:

    国家重大科学研究计划项目“西北太平洋多尺度变化过程、机理及可预测性”(编号:2013CB956200)资助.

Study on Intraseasonal Variation of Current at the Source Region of Kuroshio by Analyzing the Buoy Observation Data

Duan Jing, Chen Zhaohui, Wu Lixin   

  1. (Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266003, China
  • Received:2013-12-02 Online:2014-04-10 Published:2014-04-10

通过分析2010年11月至2011年7月黑潮源区的单点潜标观测数据, 得出在上层北向黑潮之下400~700 m的南向深层海流存在季节内变化(冬季> 夏季> 春季)。结合卫星高度计数据、SODA 2.2.4数据集、WOD09数据模式资料对观测结果进行分析, 得到深层南向流季节内变化的一个可能影响机制为: 观测点气候态背景流与中尺度涡旋运动扰动的叠加。进一步, 结合HYCOM模式数据计算源地黑潮流主轴, 得到在观测期间潜标放置点同流轴的纬向距离存在季节内变化(冬季> 夏季> 春季), 得出深层南向流季节内变化的另一个可能影响机制为: 潜标放置点与源地黑潮主轴的纬向距离会直接影响观测结果, 潜标越靠近主轴测得流速越强, 相反则越弱。

Using subsurface buoy data during November 2010 to July 2011, the south flow, which is under the northward Kuroshio Current between 400 m to 700 m, was studied. According to the time series available from subsurface buoy, the seasonality of the south flow strength is winter > summer > spring. In addition to the Acoustic Doppler Current Profiler (ADCP) data, satellite altimeter data, the SODA 2.2.4 and the World Ocean Database 2009 (WOD09) were further analyzed and a possible influence mechanism is: the intraseasonal variation (winter>summer>spring) of the south flow is mostly influenced by mesoscale eddies east of Luzon, indicating that the observed flow is a combination of background flow and eddy-induced flow. With the consideration of oscillating of the source of the Kuroshio which affected the on observation, we calculated the axis of the source of the Kuroshio based on HYCOM data by using weighted average method. A number of features of the Kuroshio axis were identified. During November 2010 to July 2011, significant intraseasonal variability of the distance between Kuroshio axis and the longitude of buoy (122.7°E) was exposed. The whole layer had influence on the axis from surface to 700 m. Therefore, another possible influence mechanism is: The observed flow is also influenced by the horizontal oscillation of the Kuroshio axis, the observed meridional velocity is higher when the distance is smaller, and vice versa.

中图分类号: 

[1] Wu Lixin, Chen Zhaohui. Progresses and challenges in observational studies of physical oceanography[J]. Advances in Earth Science, 2013, 28(5): 542-551. [吴立新, 陈朝晖. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5): 542-551. ]
[2] Wu Lixin, Liu Qinyu, Hu Dunxin, et al. Variability of the subtropical gyre in North Pacific and its impacts on dynamic environment of China marginal seas[J]. Advances in Earth Science, 2007, 22(12): 1 224-1 230. [吴立新, 刘秦玉, 胡敦欣, 等. 北太平洋副热带环流变异及其对我国近海动力环境的影响[J]. 地球科学进展, 2007, 22(12): 1 224-1 230. ]
[3] Yuan D L, Han W Q, Hu D X. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research, 2006, 111:C11007, doi:10. 1029/2005JC003412.
[4] Hu D, Cui M. The western boundary current in the far-western Pacific Ocean[C]∥Picaut J, Lukas R, Delcroix T, eds. Proceedings of Western International Meeting and Workship on TOGA COARE. New Caledonia, 1989:123-134.
[5] Qu T, Kagimoto T, Yamagata T. A subsurface countercurrent along the east coast of Luzon[J]. Deep Sea Research, 1997, 44: 413-423.
[6] Qu T, Mitsudera H, Yamagata T. On the western boundary currents in the Philippine Sea[J]. Journal of Geophysical Research, 1998, 103(C4):7 537-7 548.
[7] Qu T, Mitsudera H, Yamagata T. A climatology of the circulation and water mass distribution near the Philippine Coast[J]. Journal of Physical Oceanography, 1999, 29(7): 1 488-1 505.
[8] Xie L, Tian J, Hu D, et al. A quasi-synoptic interpretation of water mass distribution and circulation in the western North Pacific II: Circulation[J]. Chinese Journal of Oceanology Limnology, 2009, 27(4): 955-965.
[9] Gao S, Qu T, Hu D. Origin and pathway of the Luzon undercurrent identified by a simulated adjoint tracer[J]. Journal of Geophysical Research, 2012, 117(C5): C05011, doi: 10. 1029/2011JC007748.
[10] Wang Q, Hu D. Origin of the Luzon undercurrent[J]. Bulletin of Marine Science, 2012, 88(1): 51-60.
[11] Hu D, Wang F, Wu L, et al. Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) Science/Implementation Plan[M]. Beijing: China Ocean Press, 2011.
[12] Hu D X, Hu S, Wu L, et al. Direct measurements of the Luzon undercurrent[J]. Journal of Physical Oceanography, 2013, 43:1 417-1 425.
[13] Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. American Meteorological Society, 2008, 136:2 999-3 017.
[14] Barnes S L. A technique for maximizing details in numerical weather map analysis[J]. Jounal of Applied Meteorology, 1964, 3: 396-409.
[15] Cressman G P. An operational objective analysis system[J]. Monthly Weather Review, 1959, 87: 367-374.
[16] Gandin L S. The Objective Analysis of meteorological fields. translated from the Russian. Jerusalem (Israel Program for Scientific Translations), 1965. Pp. vi, 242: 53 Figures; 28 Tables[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 92(393):447.
[17] Wang Guihua, Li Rongfeng. Advance in the study of deducing ocean circulation from hydrographic data[J]. Advances in Earth Science, 2004, 19(1): 100-106. [王桂华, 李荣凤. 利用水文资料推测海洋流场的研究进展[J]. 地球科学进展, 2004, 19(1): 100-106. ]
[18] Adams D K, McGillicuddy Jr D J, Luis Zamudio, et al. Surface-generated mesoscale Eddies transport deep-sea products from hydrothermal vents[J]. Science, 2011, 332 (6 029):580-583.
[1] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[2] 苏京志;王东晓;陈举;杜岩;谢强. 利用回归模型模拟卫星跟踪海洋漂流浮标轨迹[J]. 地球科学进展, 2005, 20(6): 607-617.
阅读次数
全文


摘要