地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1099 -1107. doi: 10.11867/j.issn.1001-8166.2019.10.1099

研究简报 上一篇    

鲁西齐河地区岩(矿)石物性特征及应用
吴成平 1, 2( ),于长春 1, 2,王卫平 1, 2,马勋表 1, 2,范正国 1, 2,朱宏伟 1, 2   
  1. 1. 中国自然资源航空物探遥感中心 北京 100083
    2. 自然资源部航空地球物理与遥感地质重点实验室 北京100083
  • 收稿日期:2019-08-21 修回日期:2019-09-25 出版日期:2019-10-10
  • 基金资助:
    国家重点研发计划项目“综合航空物探地球物理探测系统集成方法技术研究”(2017YFC0602201)

Physical Characteristics of Rocks and Ores and Their Application in Qihe Area, Western Shandong

Chengping Wu 1, 2( ),Changchun Yu 1, 2,Weiping Wang 1, 2,Xunbiao Ma 1, 2,Zhengguo Fan 1, 2,Hongwei Zhu 1, 2   

  1. 1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
    2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology,Ministry of Natural Resources,Beijing 100083,China
  • Received:2019-08-21 Revised:2019-09-25 Online:2019-10-10 Published:2019-12-09
  • About author:Wu Chengping(1982-), male, Hangzhou City, Zhejiang Province, Senior Engineer. Research areas include aeromagnetic data processing and integrated interpretation. E-mail: chengpingwu@163.com
  • Supported by:
    the National Key R&D Program of China “Research on integrated method and technology of integrated geophysical exploration system for Aero geophysical exploration”(2017YFC0602201)

为系统掌握鲁西齐河地区岩(矿)石物性特征,服务于基础地质和矿产资源调查,在该地区及周边实地采集了磁性、密度等物性参数,并根据不同岩(矿)石分类进行统计分析。结果表明,磁铁矿的磁性最大,基性侵入岩的磁性大于中酸性侵入岩,而沉积岩的磁性最弱。新生界与下伏地层和岩体的密度差异明显,其界面起伏变化可以引起明显的重力异常。磁铁矿的密度最大,黄铁矿次之。太古界泰山岩群变质岩密度较大,也可引起一定强度的重力异常。通过物性特征与地球物理场之间的联系,综合其他资料进行了岩性填图,圈定变质岩和侵入岩范围,确定了强磁性地质体范围作为找矿靶区,并基于物性特征进行了重磁联合反演,推断矿体的埋深、厚度等信息,与钻探验证结果吻合。研究结果提高了对该地区岩(矿)石物性特征的认识程度,为地球物理资料的反演解释和地质构造、矿产研究等提供更可靠的依据。

In order to understand the physical characteristics of rocks and ores in Qihe, western Shandong and serve to basic geology and mineral resources investigation, the magnetic and density properties were collected in the survey area and the surrounding area, and statistics and analysis were given on the physical properties in terms of different kinds of rocks and ores. The result is that magnetite has the maximum value of magnetic property, the values of magnetic properties of basic rocks are bigger than the intermediate-acidic intrusive rocks, and the values of magnetic properties of sedimentary rocks are the smallest. The density of the Cenozoic strata is obviously different from formations and intrusive rocks under the covered area. Their interfaces cause the obvious gravity anomalies. The density value of magnetite is the biggest, and the density value of iron pyrite is the second biggest. The density of the metamorphic rocks of the Archeozoic Taishan rock group can cause certain gravity anomaly. Taking advantage of the relationship between the physical characteristics and the geophysical field, this paper mapped the lithology synthesizing other data, determined the ranges of metamorphic rocks and intrusive rocks, and delimited the ranges of ferromagnetic geological bodies as the target prospecting areas. Based on the physical characteristics, the depth and thickness information about the magnetite ore was inferred by conducting gravity and magnetic joint inversion. The result was nearly the same as the result of the verification borehole. The work of the research has promoted the understanding of physical characteristics of rocks and ores in this area, and provided more reliable basis for geophysical inversion and interpretation, geological structure and mineral resources research.

中图分类号: 

图1 研究区地质图(位置见图2篮色框)
Fig.1 Geologic map in research arealocated in the blue rectangle in Fig.2
图2 物性点分布及钻孔位置
Fig.2 Positional distribution of physical properties and boreholes
图3 研究区岩(矿)石磁化率统计图
Fig.3 Magnetic susceptibility statistical charts of rocks and ores in research area
图4 研究区岩(矿)石密度统计图
Fig.4 Density statistical chat of rocks and ores in research area
图5 鲁西齐河地区航空重磁推断岩性构造填图
(a)航磁△ T等值线图;(b)航磁△ T化极垂向一阶导数图;(c)航空物探推断岩性构造图
Fig.5 Geological structure map inferred by airborne gravity and magnetic Survey in Qihe, Western Shandong
(a)Airborne magnetic total field;(b)Vertical first derivative of airborne magnetic reduce to pole field;(c)Geological structure map inferred by airborne gravity and magnetic survey
图6 L1剖面航空重磁联合反演
Fig.6 Airborne gravity and magnetic joint inversion of profile L1
1 Balla Ondoa A , Ngos III S , Ndjeng E , et al . Contribution of the magnetic susceptibility to the characterization of the Babouri-Figuil Cretaceous Basin[J]. Open Journal of Soil Science, 2014, 4: 272-283.
2 Guo W W , Li Z X , Dentith M C . Magnetic petrophysical results from the Hamersley Basin and their implications for interpretation of magnetic surveys[J]. Australian Journal of Earth Sciences,2011,58: 317-333.
3 Chen Jie , Zhu Benduo , Wen Ning , et al . Gravity-magnetic response of the islands and seamounts of South China Sea[J]. Chinese Journal of Geophys, 2012, 55(9): 3 152-3 162.
陈洁,朱本铎,温宁,等 .南海海岛海山的重磁响应特征[J].地球物理学报, 2012, 55(9): 3 152-3 162.
4 Guo Youzhao , Lin Tianliang . Implication of rock magnetism in igneous rock[J]. Foreign Geoexploration Technology, 1994,(4): 1-10.
郭友钊,林天亮 .岩石磁学在岩浆岩岩石学研究中的应用[J].国外地质勘探技术,1994,(4):1-10.
5 Aifa T , Zerrouki A A , Baddari K , et al . Magnetic susceptibility and its relation with fractures and petrophysical parameters in the tight sand oil reservoir of hamra quartzites, southwest of the Hassi messaoud oil field, Algeria[J]. Journal of Petroleum Science and Engineering, 2014, 123: 120-137.
6 Zhao Beimin , Hao Tianyao , Xu Ya , et al . Study on physical property of rock in oil and gas exploration[J]. Progress in Geophysics,2009,24(5):1 689-1 695.
赵百民,郝天珧,徐亚,等 .油气资源探测中的物性研究[J].地球物理学进展,2009,24(5):1 689-1 695.
7 Gautam P , Blaha U , Appel E . Magnetic susceptibility of dustloaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu City,Nepal[J]. Atmospheric Environment, 2005, 39: 201-211.
8 Yin Gang , Hu Shouyun , Yan Haitao . Magnetic research methods and their application characteristics of different environmental pollution carriers[J]. Progress in Geophysics, 2012, 27(5): 1 947-1 956.
尹刚,胡守云,闫海涛 .不同环境污染载体的磁学研究及其应用特点[J].地球物理学进展,2012,27 (5):1 947-1 956.
9 Dalan R A . A review of the role of magnetic susceptibility in archaeo geophysical studies in the USA: Recent developments and prospects[J]. Archaeological Prospection, 2008, 15: 1-31.
10 Wang Jian , Liu Zechun , Jiang Wenying , et al . A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications[J]. Acta Geographica Sinica, 1996,51(2):155-163.
王建,刘泽纯,姜文英,等 .磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996, 51(2):155-163.
11 Zhang Zengqi , Li Yingping , Wang Huaihong ,et al . A large-scale high-grade iron ore deposit is founded in Qihe-Yucheng,Shandong Province[J]. Shandong Land and Resources,2016,32(5):94.
张增奇,李英平,王怀洪,等 .山东省齐河禹城地区发现大型富铁矿[J].山东国土资源,2016,32(5):94.
12 Hao Xingzhong , Yang Yiheng , Li Yingping ,et al . Ore-controlling characteristics and prospecting criteria of iron deposits in Qihe area of western Shandong[J].Journal of Jilin University(Earth Science Edition),2019,49(4):982-991.
郝兴中,杨毅恒,李英平,等 .鲁西齐河地区铁矿控矿特征及找矿标志[J].吉林大学学报:地球科学版,2019,49(4):982-991.
13 Chen Xiaoman , Wang Juan , Wang Jiguo , et al . Geological characteristics and prospecting potential of Dazhang iron deposit in Qihe County of Shandong Province[J].Shandong Land and Resources,2017,33(12):24-29.
陈晓曼,王娟,王继国,等 .山东省齐河大张铁矿地质特征及找矿前景[J].山东国土资源,2017,33(12):24-29.
14 Guo Yanming , Hao Xingzhong , Zhong Weijie , et al . Application of high—Precision magnetic measurement in exploration of hidden iron deposit—Setting iron deposits in Litun area of Yueheng City[J]. Shandong Land and Resources, 2017, 33(10): 52-56.
郭延明,郝兴中,钟伟杰,等 .地面高精度磁测在隐伏铁矿勘查中的应用[J].山东国土资源,2017,33(10):52-56.
15 Zhu Yuzhen , Zhou Minglei , Gao Zhijun , et al . The discovery of the Qihe-Yucheng skarn type rich iron deposit in Shandong and its exploration significance[J]. Geological Bulletin of China, 2018, 37(5):938-944.
朱裕振,周明磊,高志军,等 .山东齐河—禹城地区矽卡岩型富铁矿的发现及其意义[J].地质通报,2018,37(5):938-944.
16 Hao Xingzhong , Yang Yiheng , Liu Wei . Geological characteristics and prospecting significance of skarn type iron deposit in Pandian area,Shandong Province[J].Science Technology and Engineering,2018,18(20): 51-58.
郝兴中,杨毅恒,刘伟 .山东潘店地区矽卡岩型铁矿地质特征及找矿意义[J].科学技术与工程,2018,18(20):51-58.
17 Wu Chengping , Wang Weiping , Xiao Gangyi , et al . The magnetic susceptibility features of rocks and ores in central Inner Mongolia[J]. Geophysical & Geochemical Exploration,2014,38(3):490-496.
吴成平,王卫平,肖刚毅,等 .内蒙古中部地区岩矿石磁化率特征[J].物探与化探,2014,38(3):490-496.
18 Zhou Xihua , Meng Xiangcong , Wang Jinlong , et al . The developing of intelligent magnetic susceptibility meter[J]. Geophysical&Geochemical Exploration, 2005, 29(5): 428-430.
周锡华,孟祥聪,王金龙,等 .智能磁化率仪的研制[J]. 物探与化探,2005,29(5): 428-430.
19 DZ/T0071-93.Technical Specification for High Precision Ground Magnetic Survey[S]. [DZ/T0071-93.地面高精度磁测技术规程[S].]
20 Wu Chengping , Yu Changchun , Zhou Minglei , et al . Residual calculation of airborne and ground magnetic field and its prospecting application in heavily covered plain area[J/OL]. Progress in Geophysics.[2019-05-01]. .
URL    
吴成平,于长春,周明磊,等 .空地磁残差计算在平原厚覆盖区找矿应用[J/OL].地球物理学进展.[2019-05-01]. .
URL    
[1] 胡蒙育,B. Maher. 中国黄土堆积的磁性记录与古降雨量重建[J]. 地球科学进展, 2002, 17(3): 320-325.
阅读次数
全文


摘要