地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1092 -1098. doi: 10.11867/j.issn.1001-8166.2019.10.1092

新学科 新技术 新发现 上一篇    下一篇

多组复合指纹示踪法及其应用
柳本立 1( ),牛百成 1, 3,屈建军 1   
  1. 1. 中国科学院西北生态环境资源研究院/沙漠与沙漠化重点实验室,敦煌戈壁荒漠研究站,甘肃 兰州 730000
    2. 美国农业部农业研究局草地研究中心,俄克拉荷马 厄尔里诺 73036
    3. 中国科学院大学,北京 100049
  • 收稿日期:2019-04-15 修回日期:2019-08-16 出版日期:2019-10-10
  • 基金资助:
    美丽中国生态文明建设科技工程专项“沙漠边缘扩张带稳固技术与示范”(XDA23060201);中国科学院青年创新促进会(2016373)

A Multiple Composite Fingerprinting Method and Its Application

Benli Liu 1( ),Xunchang John Zhang 2,Baicheng Niu 1, 3,Jianjun Qu 1   

  1. 1. Dunhuang Gobi Desert Research Station, Key Laboratory of Desert and Desertification/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. Grazinglands Research Laboratory, Agricultural Research Service, United States Department of Agriculture, El Reno, OK 73036, USA
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-04-15 Revised:2019-08-16 Online:2019-10-10 Published:2019-12-09
  • About author:Liu Benli (1986-), male, Luohe City, He'nan Province, Associate professor. Research areas include aeolian disaster and aeolian engineering. E-mail: liubenli@lzb.ac.cn
  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Sciences “Technologies and demonstration on the stabilization of expanding desert margin belt”(XDA23060201);The Youth Innovation Promotion Association of the Chinese Academy of Sciences(2016373)

指纹示踪法是确定水力作用下流域泥沙物质来源贡献率的重要手段,其中选用多个指纹因子组成一组“最优指纹”的复合指纹示踪法应用最为广泛。该类方法不受空间尺度或沉积物传输过程的限制,因此可以采用相似的步骤,应用到风力沉积问题当中。然而对比研究发现,一组复合指纹判别能力的高低并不能代表其优化求解判别结果的准确程度,二者之间没有正相关性。介绍了基于指标之间解析解关系筛选多个指标组合的多组复合指纹示踪法,以及该方法在不同尺度流域的检验。相对于蒙特卡洛方法进行优化获得数值解的方法,采用所有具有有效解析解的多组指纹组合结果平均值,可获得同样合理的结果,但大大减少了计算量。该方法已被推广应用于风沙堆积物质,以及风沙、水沙共同作用下的干旱区水库泥沙淤积物质来源的定量判别中。

Fingerprinting technique provides an essential means for estimating source contributions of watershed sediments, in which a single group of “optimum composite fingerprints” has been widely used in the literature to estimate sediment provenance. This type of methods is not restricted by the scale or process of sediment transportation so that similar procedures can be applied in sediment provenance research for aeolian depositions. However, recent studies found no direct link (positive relationship) between the ability of the tracer group to discriminate sources and its rigor in estimating source contributions after optimization. Here, we introduced a recently developed multiple composite fingerprinting method with additional screening based on analytical solutions, and further reviewed its verification in watersheds at different scales. It turned out that compared to Monte Carlo optimization method, a reasonable estimation can be achieved using the mean of the maximum number of composite fingerprints that given analytical solution to the mixing model, but the computational cost can be reduced significantly. The reliability of this new method was also tested in source contribution estimating of aeolian sediments, and the provenance quantification of reservoir sediment in an arid region experiencing both wind and water sediments.

中图分类号: 

图1 两种元素组合的解析解关系
(a)有效组合;(b)无效组合
Fig.1 Two types of element groups based on analytical solution
(a) Feasible; (b) Conflicting
图2 不同元素组合判别能力与源区贡献率预测误差的关系(数据源自参考文献[ 20 ])
Fig. 2 Relationship between discriminate ability and predict error on source contributions of the multiple element groupsdata from reference [ 20 ])
图3 基于元素本身分布产生随机数进行蒙特卡洛模拟获得的源区贡献率分布、平均值及标准误(数据源自参考文献[ 20 ])
Fig.3 Frequency distributions, mean proportions and their standard errors of the three sources from Monte Carlo simulation using generated random numbers based on the identical distribution of each elementdata from reference [ 20 ])
图4 预测的同一河道上游、中游和下游3种泥沙源区平均贡献率(数据源自参考文献[ 21 ])
Fig.4 Estimated mean proportional contributions from the cropland, rangeland, and gully sources at the three trap locations on the main streamdata from reference [ 21 ])
1 Walling D E , Woodward J C , Nicholas A P . A multi-parameter approach to fingerprinting suspended sediment sources[M] // Peters N E, Hoehn E, Leibundgut C, et al . Tracers in Hydrology. IAHS Press, 1993: 329-337.
2 Zhang Xunchang , Zhang Guanghui , Garbrecht J D , et al . Dating sediment in a fast sedimentation reservoir using cesium-137 and lead-210[J]. Soil Science Society of America Journal, 2015, 79(3): 948-956.
3 Laceby J P , Olley J . An examination of geochemical modelling approaches to tracing sediment sources incorporating distribution mixing and elemental correlations[J]. Hydrological Processes, 2015, 29(6): 1 669-1 685.
4 Collins A L , Walling D E , Leeks G J L . Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique[J]. CATENA, 1997, 29(1): 1-27.
5 Collins A L , Zhang Y , McChesney D , et al . Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling[J]. Science of the Total Environment, 2012, 414: 301-317.
6 Collins A L , Walling D E , Webb L , et al . Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information[J]. Geoderma, 2010, 155(3): 249-261.
7 Walling D E . The evolution of sediment source fingerprinting investigations in fluvial systems[J]. Journal of Soils and Sediments, 2013, 13(10): 1 658-1 675.
8 Walling D E , Woodward J C . Tracing sources of suspended sediment in river basins—A case study of the River Culm, Devon, UK[J]. Marine and Freshwater Research, 1995, 46(1): 327-336.
9 Huang Donghao , Du Pengfei , Walling D E , et al . Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China[J]. Geoderma, 2019, 343: 139-154.
10 Yang Mingyi , Xu Longjiang . Fingerprinting suspended sediment sources in a small catchment on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2010, 24(2): 30-34.
杨明义, 徐龙江 . 黄土高原小流域泥沙来源的复合指纹识别法分析[J]. 水土保持学报, 2010, 24(2): 30-34.
11 Zhang Jiaqiong , Yang Mingyi , Zhang Fengbao , et al . Fingerprinting sediment sources in the water-wind erosion crisscross region on the Chinese Loess Plateau[J]. Geoderma, 2019, 337: 649-663.
12 Zhou Man , Lin Jiahui , Huang Yanhe , et al . Using composite fingerprints to qualify sediment source in watershed with intensive exploitation on red soil region[J]. Journal of Soil and Water Conservation, 2019, 33(1): 20-24.
周曼, 林嘉辉, 黄炎和, 等 . 复合指纹法分析红壤区强度开发小流域泥沙来源[J]. 水土保持学报, 2019, 33(1): 20-24.
13 Lin Jinshi , Huang Yanhe , Chen Qijun , et al . Research on the sediment source of granite collapse erosion by the composite fingerprints[J]. Subtropical Soil and Water Conservation, 2011, 23(5): 5-8.
林金石, 黄炎和, 陈起军,等 . 组合指纹法研究花岗岩崩岗侵蚀泥沙来源[J]. 亚热带水土保持, 2011, 23(5): 5-8.
14 Ma Qianhong , Zhang Keli . Progresses and prospects of the research on soil erosion in karst area of Southwest China[J]. Advances in Earth Science, 2018, 33(11):1 130-1 141.
马芊红, 张科利 .西南喀斯特地区土壤侵蚀研究进展与展望[J].地球科学进展, 2018, 33(11):1 130-1 141.
15 Smith H G , Evrard O , Blake W H , et al . Preface-addressing challenges to advance sediment fingerprinting research[J]. Journal of Soils and Sediments, 2015, 15(10): 2 033-2 037.
16 Sherriff S C , Franks S W , Rowan J S , et al . Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data[J]. Journal of Soils and Sediments, 2015, 15(10): 2 101-2 116.
17 Collins A L , Walling D E , Leeks G J L . Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers[J]. Earth Surface Processes and Landforms, 1998, 23(1): 31-52.
18 Wilkinson S N , Hancock G J , Bartley R , et al . Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River Basin, Australia[J]. Agriculture Ecosystems & Environment, 2013, 180: 90-102.
19 Motha J A , Wallbrink P J , Hairsine P B , et al . Determining the sources of suspended sediment in a forested catchment in southeastern Australia[J]. Water Resources Research, 2003, 39(3). DOI:10.1029/2001WR000794 .
doi: 10.1029/2001WR000794    
20 Zhang Xunchang , Liu Benli . Using multiple composite fingerprints to quantify sediment source contributions: A new direction[J]. Geoderma, 2016, 268: 108-118.
21 Zhang Xunchang , Liu Benli , Liu Bing , et al . Quantifying sediment provenance using multiple composite fingerprints in a small watershed in Oklahoma[J]. Journal of Environmental Quality, 2016, 45(4): 1 296-1 302.
22 Liu Benli , Niu Qinghe , Qu Jianjun , et al . Quantifying the provenance of aeolian sediments using multiple composite fingerprints[J]. Aeolian Research, 2016, 22: 117-122.
23 Niu Baicheng , Qu Jianjun , Zhang Xunchang , et al . Quantifying provenance of reservoir sediment using multiple composite fingerprints in an arid region experiencing both wind and water erosion [J]. Geomorphology, 2019, 332: 112-121.
24 Tang Qiang , He Xiubin , Bao Yuhai , et al . A review of studies on catchment sediment sources discrimination with fingerprinting techniques[J]. Science of Soil and Water Conservation, 2013, 11(3): 109-117.
唐强, 贺秀斌, 鲍玉海, 等 . 泥沙来源“指纹”示踪技术研究综述[J]. 中国水土保持科学, 2013, 11(3): 109-117.
25 Zhou Huiping , Chen Yudong , Chang Weina . Sediment source fingerprinting: Progresses and prospects [J]. Journal of Soil and Water Conservation, 2018, 32(5): 1-7.
周慧平, 陈玉东, 常维娜 . 指纹技术识别泥沙来源:进展与展望[J]. 水土保持学报, 2018, 32(5): 1-7.
26 Simon Pulley , Ian Foster , Paula Antunes . The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene River Basin[J]. Geomorphology, 2015, 228: 303-319.
[1] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[2] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[3] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[4] 张正偲, 潘凯佳, 梁爱民, 董治宝, 李兴财. 戈壁沙尘释放过程与机理研究进展[J]. 地球科学进展, 2019, 34(9): 891-900.
[5] 屈建军,凌裕泉,刘宝军,陈广庭,王涛,董治宝. 我国风沙防治工程研究现状及发展趋势[J]. 地球科学进展, 2019, 34(3): 225-231.
[6] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[7] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[8] 樊瑞静, 李生宇, 周杰, 王海峰. 不同外形粗糙元覆盖沙床面抗风蚀效益的风洞模拟实验[J]. 地球科学进展, 2017, 32(1): 83-89.
[9] 张克存, 安志山, 蔡迪文, 郭紫晨, 王军战. 沙漠—绿洲过渡带近地表风沙过程研究进展[J]. 地球科学进展, 2015, 30(9): 1018-1027.
[10] 张克存, 安志山, 屈建军, 庞营军. 基于三维激光扫描仪的青藏铁路风沙工程效益评价[J]. 地球科学进展, 2014, 29(10): 1197-1203.
[11] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[12] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[13] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[14] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[15] 钟德才. 中国现代沙漠动态变化及其发展趋势[J]. 地球科学进展, 1999, 14(3): 229-234.
阅读次数
全文


摘要