地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1197 -1203. doi: 10.11867/j.issn.1001-8166.2014.10.1197

所属专题: 青藏高原研究——青藏科考

上一篇    

基于三维激光扫描仪的青藏铁路风沙工程效益评价
张克存( ), 安志山, 屈建军, 庞营军   
  1. 中国科学院寒区旱区环境与工程研究所敦煌戈壁荒漠生态与环境研究站, 沙漠与沙漠化重点实验室 甘肃 兰州 730000
  • 出版日期:2014-10-20
  • 基金资助:
    国家重点基础研究发展计划项目“青藏高原重大冻土工程的基础研究”(编号:2012CB026105);国家自然科学基金项目“青藏铁路沿线风沙堆积对多年冻土环境影响的实验研究”(编号:41271216)资助

Application of 3D Laser Scanning Technology in the Evaluation of Aeolian Sand Engineering along the Qinghai-Tibet Railway

Kecun Zhang( ), Zhishan An, Jianjun Qu, Yingjun Pang   

  1. Dunhuang Gobi and Desert Ecology and Environment Research Station/Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Online:2014-10-20 Published:2014-10-20

三维激光扫描技术是近年来发展起来的新型空间信息测量技术。将三维激光扫描技术应用于青藏铁路沿线风沙工程防护体系的效益评价中,通过对铁路沿线典型防沙措施积沙形态特征、断面蚀积廓线以及蚀积量的精确测量发现:砾石方格内垂直铁路方向易形成稳定凹曲面,且方格两侧沙埂处积沙较多,中心部位积沙较少,固沙效果显著。阻沙栅栏有效防护距离为栅栏高度的12倍,单位宽度拦截沙量高达14.93 m3,设置防护体系时,阻沙栅栏间隔应保持其高度的9~12倍。研究结论为青藏铁路沿线风沙综合防护体系的措施选择、结构优化和合理布局提供技术支撑。

3D laser scanning has been a new technology in measurement of spatial information in recent years. In this paper, this technology was applied tentatively to the efficiency evaluation of the protective system of sand drift control engineering along Qinghai-Tibet Railway. The sand control efficiency of the system was evaluated by accurately measuring the morphology of sand deposition over the typical sand drift control measures, aeolian erosion and deposition profiles of the cross-section and quantities of erosion and deposition using the 3D laser scanning technology. The concave surface of rocky checkerboard sand barriers easily formed along the perpendicularly direction to the railway. Sand accumulation occured more on the sides of rocky checkerboard than its center. The effective distance of sand fences was about 12 H and sand-blocking volume was 14.93 m3 per 1 m width. Therefore, the space of sand fences should remain 9~12 H in the construction of protective systems. The objective of this study is to extend this technology to the measurement of sand disaster threatening other railways, buildings and engineering measures and to the evaluation of the protective efficiency of their control systems, thus eventually providing technical support to the measure selection, structure optimization and rational distribution of the integrative sand drift control system.

中图分类号: 

图1 青藏铁路北麓河段防护体系风沙堆积体三维测量
Fig. 1 3D Leica ScanStation (C10) used in the Beiluhe section along the Qinghai-Tibet Railway
图2 生成砾石方格TIN模型
Fig. 2 TIN model of rocky checkerboard-liked sand barrier along the Qinghai-Tibet Railway
表1 青藏铁路沿线主要站点年均风况
Table 1 Annual wind regimes in the stations along the Qinghai-Tibet Railway
图3 青藏铁路沿线砾石方格
Fig. 3 Rocky checkerboard-liked sand barrier along Qinghai-Tibet Railway
图4 砾石方格风沙蚀积断面形态
Fig. 4 Aeolian erosion and deposition profiles of rocky checkerboard-liked sand barrier
图5 砾石方格风沙堆积体体积计算示意图
Fig. 5 Schematic diagram of volume calculation of rocky checkerboard-liked sand barrier
图6 砾石方格沙障内积沙量
Fig. 6 Volume of deposition in the rocky checkerboard-liked sand barrier
图7 阻沙栅栏3D地貌激光扫描实景
Fig. 7 Aeolian deposition around sand-blocking fences scanned by the 3D Leica ScanStation
图8 阻沙栅栏积沙断面形态
Fig. 8 Aeolian erosion and deposition profiles of sand-blocking fences
图 9 阻沙栅栏两侧单宽阻沙量及百分比
Fig. 9 Volume of deposition around sand-blocking fences
[1] Zhang Jing, Zhang Aineng, Liu Guodong. Application of 3D laser scanning technology in topographical survey[J].Journal of Xi’an University of Science and Technology, 2014, 34(2): 199-203.
[张靖, 张爱能, 刘国栋. 三维激光扫描技术在地形测量中的应用[J].西安科技大学学报, 2014, 34(2): 199-203.]
[2] Li Zipo, Li Xiaojing. Application of 3D laser scanner in topographic survey[J].Engineering Technology, 2013, 16:249-250.
[李子坡, 李晓静. 三维激光扫描仪在地形测量中的应用[J].工程技术, 2013, 16:249-250]
[3] Huang You, Zheng Kun, Liu Xiuguo, et al. Application of 3D laser scanner in ore volume measurement[J].Science of Surveying and Mapping, 2012, 37(3): 90-92.
[黄有, 郑坤, 刘修国, 等. 三维激光扫描仪在测算矿方量中的应用[J].测绘科学, 2012, 37(3): 90-92]
[4] Xu Jinjun, Yu Minghui, Zheng Yanbing. Introduction on application of 3D laser scanner[J].Geotechnical Investigation and Surveying, 2008, 12:31-34.
[徐进军, 余明辉, 郑炎兵. 地面三维激光扫描仪应用综述[J].工程勘测, 2008, 12:31-34]
[5] Zhang Qifu, Sun Xianshen. Measuring principle and developmental prospect of 3D laser scanner[J].Beijing Surveying and Mapping, 2011, 1:39-42.
[张启福, 孙现申. 三维激光扫描仪测量方法与前景展望[J].北京测绘, 2011, 1:39-42]
[6] Chen Zhanpeng, Lei Tingwu, Yan Qinghong, et al. Measuring and calculation methods for landslide volume with 3D laser scanner in Wenchuan earthquake area[J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 135-144.
[陈展鹏, 雷廷武, 晏清洪, 等. 汶川震区滑坡堆积体体积三维激光扫描仪测量与计算方法[J].农业工程学报, 2013, 29(8): 135-144.]
[7] Dai Hailun, Jin Fuxin, Zhang Keli. A review of field measurement on wind erosion[J].Advances in Earth Science, 2011, 26(4): 401-408.
[戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J].地球科学进展, 2011, 26(4): 401-408.]
[8] Yao Zhengyi, Qu Jianjun. Sand hazards along Qinghai-Tibet Railway and its control[J].Journal of Desert Research, 2012, 32:300-307.
[姚正毅, 屈建军. 青藏铁路格尔木—拉萨路风成沙物源及其粒度特征[J].中国沙漠, 2012, 32:300-307.]
[9] Zhang Kecun, Qu Jianjun, Yao Zhengyi, et al. Sand damage and its control along the Golha section of the Qinghai-Tibet Railway[J].Arid Land Geography, 2014, 37(1): 74-80.
[张克存, 屈建军, 姚正毅, 等. 青藏铁路格拉段风沙危害及其防治[J].干旱区地理, 2014, 37(1): 74-80.]
[10] Zhang K C, Qu J J, Niu Q H, et al. Characteristics of wind-blown sand and dynamic environment in the section of Wudaoliang-Tuotuo River along the Qinghai-Tibet Railway[J].Environmental Earth Sciences, 2011, 64: 2039-2046.
[11] Zhang T J, Harry W B, Cheng G D, et al. The Qinghai-Tibet Railroad: A milestone project and its environmental impact[J].Cold Regions Science and Technology, 2008, 53: 229-240.
[12] Xia Lijiang, Zhou Guoqing, Liu Yuyi, et al. Effects of sunshine-shield of Qinghai-Tibet Railway land bridge on the solar radiation of under bridge and surrounding permafrost[J].Advances in Earth Science, 2014, 29(3): 380-387.
[夏利江, 周国庆, 刘宇翼, 等. 青藏铁路旱桥桥面遮阳对桥下及周边冻土太阳辐射影响[J].地球科学进展, 2014, 29(3): 380-387.]
[13] Mckee E D. A Study of Global Sand Seas[M].Honolulu, Hawaii: University Press of the Pacific, 1979.
[14] Du Bei. The situation and prevention of soil erosion along the Tanggulha-Lhasa section of the Qinghai-Tibet Railway[J].Journal of Glaciology and Geocryology, 2003, 25(1): 190-194.
[杜蓓. 唐古拉至拉萨段铁路沿线水土流失现状及其防治对策[J].冰川冻土, 2003, 25(1): 190-194.]
[15] Xu X L, Zhang K L, Kong Y P, et al. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan Plateau, China[J].Transportation Research Part D, 2006, 11: 302-309.
[16] Wang Shaoling. Research on the degradation of frozen soil on Qinghai-Tibet Plateau[J].Advances in Earth Science, 1997, 12(2): 164-167.
[王绍令. 青藏高原冻土退化的研究[J].地球科学进展, 1997, 12(2): 164-167.]
[17] Nan Zhuotong, Li Shuxun, Cheng Guodong. Forecasting for the changes of permanent frozen soil on Qinghai-Tibet Plateau in the future of 50 and 100 years[J].Science in China (Series D), 2004, 34(6): 528-534.
[南卓铜, 李述训, 程国栋. 未来50 与100 a 青藏高原多年冻土变化情景预测[J].中国科学: D辑, 2004, 34(6): 528-534.]
[18] Zhang Kecun, Qu Jianjun, Dong Zhibao, et al. Preliminary research on fluctuant characteristics of wind speed over checkerboard sand barriers[J].Arid Zone Research, 2006, 23(1): 93-97.
[张克存, 屈建军, 董治宝, 等. 格状沙障内风速波动特征初步研究[J].干旱区研究, 2006, 23(1): 93-97.]
[19] Qu Jianjun, Ling Yuquan, Zu Ruiping, et al. Study on comprehensive sand-protecting efficiency of semi-buried checkerboard sand barriers[J].Journal of Desert Research, 2005, 25(3): 329-335.
[屈建军, 凌裕泉, 俎瑞平, 等. 半隐蔽格状沙障的综合防护效益研究[J].中国沙漠, 2005, 25(3): 329-335.]
[20] Wang Ping, Zheng Xiaojing. Development of unsteady windblown sand transport[J].Advances in Earth Science, 2014, 29(7): 786-794.
[王萍, 郑晓静. 非平稳风沙运动研究进展[J].地球科学进展, 2014, 29(7): 786-794.]
[21] Chang Zhaofeng, Zhong Shengnian, Han Fugui, et al. Research of the suitable row spacing on clay barriers and straw barriers[J].Journal of Desert Research, 2000, 20(4): 455-457.
[常兆丰, 仲生年, 韩福桂, 等. 粘土沙障及麦草沙障合理间距的调查研究[J].中国沙漠, 2000, 20(4): 455-457.]
[22] Zhang Kecun, Qu Jianjun, Niu Qinghe, et al. Simulative research on the mechanism of rocky checkerboard sand barriers along the Qinghai-Tibet Railway in wind tunnel[J].Advances in Earth Science, 2010, 25(3): 284-289.
[张克存,屈建军,牛清河,等. 青藏铁路沿线砾石方格固沙机理风洞模拟研究[J].地球科学进展, 2010, 25(3): 284-289.]
[1] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[2] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[3] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[4] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[5] 张正偲, 潘凯佳, 梁爱民, 董治宝, 李兴财. 戈壁沙尘释放过程与机理研究进展[J]. 地球科学进展, 2019, 34(9): 891-900.
[6] 屈建军,凌裕泉,刘宝军,陈广庭,王涛,董治宝. 我国风沙防治工程研究现状及发展趋势[J]. 地球科学进展, 2019, 34(3): 225-231.
[7] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[8] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[9] 樊瑞静, 李生宇, 周杰, 王海峰. 不同外形粗糙元覆盖沙床面抗风蚀效益的风洞模拟实验[J]. 地球科学进展, 2017, 32(1): 83-89.
[10] 张克存, 安志山, 蔡迪文, 郭紫晨, 王军战. 沙漠—绿洲过渡带近地表风沙过程研究进展[J]. 地球科学进展, 2015, 30(9): 1018-1027.
[11] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[12] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 2014(6): 734-747.
[13] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[14] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[15] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
阅读次数
全文


摘要