地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1001 -1014. doi: 10.11867/j.issn.1001-8166.2019.10.1001

所属专题: “火星地貌”虚拟专刊

综述与评述    下一篇

深空探测时代的风沙地貌学
董治宝( ),吕萍   
  1. 陕西师范大学行星风沙科学研究院,陕西 西安 710119
  • 收稿日期:2019-09-05 修回日期:2019-09-25 出版日期:2019-10-10
  • 基金资助:
    国家自然科学基金项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);“巴丹吉林沙漠高大沙山系统的形成”(41871008)

Aeolian Geomorphology in the Era of Deep Space Exploration

Zhibao Dong( ),Lü Ping   

  1. Planetary Aeolian Research Institute, Shaanxi Normal University, Xi’an 710119, China
  • Received:2019-09-05 Revised:2019-09-25 Online:2019-10-10 Published:2019-12-05
  • About author:Dong Zhibao (1966-), male, Yulin City, Shaanxi Province, Professor. Research areas include aeolian geomorphology and physics of blown sand. E-mail: zbdong@snnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Weathering rate of the dry denudated mountains surrounding the Tarim Basin” (No. 41930641) and “Formation of the meagadune system in China’s Badain Jaran Sand Sea”(41871008)

“深海、深地、深空”探测为地球科学发展提供了机遇与挑战,地球科学开始迎接以火星探测为代表的深空探测高潮。中国将于2020年实施火星探测计划,对火星开展全球性、综合性的环绕探测,并对局部地区开展巡视探测。行星地学研究,包括风沙地貌学,需要未雨绸缪,做好准备。基于风沙地貌学的发展历史与趋势,将发展历史划分为只关注风沙地貌本身的经典研究、关注地球系统的现代研究和关注地外星球的未来研究3个阶段,总结了各阶段的特点,认为深空探测时代的行星风沙地貌学研究已水到渠成。随之重点总结了行星风沙地貌学的发展与成就,指出亟待解决的问题,展望未来发展方向。现已探明在火星、金星和土卫六上有多种类型风沙地貌发育,风成过程甚至是这些星球最活跃的现代表面过程。不同星球风沙地貌具有较好的相似性,但差异也很明显,意味着风沙地貌发育机理的统一性和形成条件的多样性,风沙地貌学理论需要通过不同星球风沙地貌的对比研究逐步完善和拓展。地外行星上较为简单的形成条件在展示风沙地貌形成规律和机理方面具有明显优势,深空探测时代的风沙地貌学方兴未艾。

The exploration of "Deep Sea, Deep Earth and Deep Space" provides opportunities and challenges for the development of geoscience, and geographical science begins to meet the climax of deep space exploration represented by Mars. In China, Martian exploration will be launched in 2020, which will carry out global and comprehensive surrounding exploration of Mars, patrol detection in some local areas, researchers need to be well prepared for the study of planetary geosciences including aeolian geomorphology based on these coming data. Aeolian geomorphology is divided into three stages based on the development history and trend: classical research focusing on single dune observation, modern research with earth system ideology and future research mainly on extra-terrestrial planets. The characteristics of each developing stage were summarized, and we believe that the planetary aeolian research will come naturally. Then, the development and achievement of planetary aeolian research are summarized, the existing problems and future developing trend were also discussed here. Study shows that there are many types of aeolian landforms on Mars, Venus and Titan, and the aeolian process is the most active modern surface process. Aeolian geomorphology in different planets has good similarity, but the difference is also obvious, which means that they have similar formation mechanism, but different formation and evolution conditions, therefore, the theory of aeolian geomorphology will be improved and enriched gradually through the comparative study on different planets. There are obvious advantages in revealing the formation laws and mechanism of aeolian geomorphology in extraterrestrial planets because of the simple formation conditions, and the research of aeolian geomorphology in the era of deep space exploration is in the ascendant.

中图分类号: 

表1 与风沙地貌有关的星体参数 [ 10 ]
Table 1 Astral parameters related to aeolian geomorphology [ 10 ]
1 Short N M , Blair R W . Geomorphology from Space: A Global Overview of Regional Landforms[M]. Washington:United States Government Printing, 1986.
2 Greeley R . Introduction to Planetary Geomorphology[M]. Introduction to Planetary Geomorphology. Cambridge: Cambridge University Press, 2013.
3 Xiao Long . Planetary Geology[M]. Beijing: Geological Publishing House, 2013.
肖龙 . 行星地质学[M]. 北京: 地质出版社, 2013.
4 Dong Z , Lv P , Qian G , et al . Research progress in China's Lop-Nur[J]. Earth-Science Reviews, 2012, 111(1/2): 142-153.
5 Dong Z , Hu G , Qian G , et al . High-altitude aeolian research on the Tibetan Plateau[J]. Reviews of Geophysics, 2017, 55(4): 864-901.
6 Li Chao , Dong Zhibao , Lü Ping, et al . A morphological insight into the Martian dune geomorphology[J]. Chinese Science Bulletin, 2019. DOI: 10. 1360/TB-2019-0168 .
doi: 10. 1360/TB-2019-0168    
李超, 董治宝, 吕萍, 等 . 火星沙丘地貌的形态学窥究[J]. 科学通报, 2019. DOI: 10. 1360/TB-2019-0168 .
doi: 10. 1360/TB-2019-0168    
7 Dong Zhibao , Qu Jianjun , Lu Jinhua , et al . Compilation of Geomorphic Map of the Kumtagh Desert[J]. Journal of Desert Research, 2010, 30(3): 483-491.
董治宝, 屈建军, 陆锦华, 等 . 1∶35万《库姆塔格沙漠地貌图》的编制[J]. 中国沙漠, 2010, 30(3): 483-491.
8 Lü P , Dong Z B , Rozier O . The combined effect of sediment availability and wind regime on the morphology of aeolian sand dunes[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(11): 2 878-2 886.
9 Mckee E D . A Study of Global Sand Seas[M]. Honolulu, Hawaii: University Press of the Pacific, 1979.
10 Greeley R , Iversen J D . Wind as a Geological Process on Earth, Mars, Venus and Titan[M]. Cambridge: Cambridge University Press, 1985.
11 Lancaster N . The Namib Sand Sea: Dune Forms, Processes and Sediments [M]. Rotterdam: AA Balkema, 1989.
12 Edgell H S . Arabian Deserts: Nature, Origin and Evolution[M]. Dordrecht: Springer, 2006.
13 Besler H . The Great Sand Sea in Egypt: Formation, Dynamics and Environment Change-a Sediment Analytical Approach[M]. Amsterdam: Elsevier, 2008.
14 Bagnold R A . Libyan Sands: Travel in a Dead World[M]. London: Hodder and Stoughton, 1935.
15 Bagnold R A . The Physics of Blown Sand and Desert Dunes[M]. London: Chapman and Hall, 1941.
16 Dong Zhibao , Su Zhizhu , Qian Guangqiang ,et al . Aeolian Geomorphology of the Kumtagh Desert [M]. Beijing: Science Press, 2011.
董治宝,苏志珠,钱广强,等 . 库姆塔格沙漠风沙地貌 [M]. 北京: 科学出版社, 2011.
17 Bagnold R A . The surface movement of blown sand in relation to meteorology[J]. Research Council of Israel Special Publication, 1953, 2: 89-96.
18 Tsoar H . Dynamic processes acting on a longitudinal (seif) sand dune[J]. Sedimentology, 1983, 30(4): 567-578.
19 Fedorovich B A . The relief of Asian sands as a reflection of atmospheric processes[J]. Problemy Fizicheskoi Geografi, Series,1948, 6(13): 92-109.
20 Livingstone I . New models for the formation of linear sand dunes[J]. Geography, 1988, 73(2): 105-115.
21 Tsoar H . New models for the formation of linear sand dunes—A discussion[J]. Geography, 1990, 75(2): 144-147.
22 Livingstone I , Wiggs G F S , Weaver C M . Geomorphology of desert sand dunes: A review of recent progress [J]. Earth-Science Reviews, 2007, 80: 239-257.
23 Wilson I G . Aeolian bedforms—Their development and origins[J]. Sedimentology, 1972, 19(3/4): 173-210.
24 Walker I J . Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research[J]. Geomorphology, 2005, 68(1/2): 57-76.
25 Baas A C W , Sherman D J . Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F3): 1-15.
26 Jackson P S , Hunt J C R . Turbulent wind flow over a low hill[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(430): 929-955.
27 Parsons D R , Walker I J , Wiggs G F S . Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry[J]. Geomorphology, 2004, 59(1/4): 149-164.
28 Ma Gaoshen . The Numerical Simulation of Sand-flow in Steady and Unsteady Inflow[D]. Lanzhou: Lanzhou University, 2011.
马高生 . 定常和非定常来流下的风沙流数值模拟[D]. 兰州:兰州大学, 2011.
29 Andreotti B , Claudin P , Douady S . Selection of dunes shapes and velocities: Part 2: A two-dimensional modeling[J]. European Physical Journal B, 2002, 2: 341-352.
30 Hersen P . On the crescentic shape of barchan dunes[J]. European Physical Journal B, 2004, 37: 507-514.
31 Werner B T . Aeolian dunes: Computer simulations and attractor interpretation[J]. Geology, 1995, 23(12): 1 107.
32 Nishimori H , Ouchi N . Computational models for sand ripple and sand dune formation[J]. International Journal of Modern Physics B, 1993, 7(09n10): 2 025-2 034.
33 Narteau C , Zhang D , Rozier O , et al . Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3):1-18.
34 Zheng Xiaojin , Bo Tianli . Analysis on dynamical behaviors of aeolian sand ripples and sand dunes[J]. Chinese Science Bulletin, 2009, 54(11):1 488-1 495.
郑晓静, 薄天利 . 风成沙波纹和沙丘的动力行为分析[J]. 科学通报.2009,54(11): 1 488-1 495.
35 Earth System Sciences Committee . Earth System Science: A closer view[M]. Washington DC: National Academies, 1988.
36 Yang Xiaoping , Shi Changxing , Li Bingyuan , et al . Some aspects about Chinese geomorphology: Recent progresses from an earth system science perspective[J]. Quaternary Sciences, 2008,28(4): 521-534.
杨小平,师长兴,李炳元,等 . 从地球系统科学角度浅析中国地貌若干问题研究的新进展[J]. 第四纪研究, 2008,28(4): 521-534.
37 Fu Bojie . Thoughts on the recent development of physical geography[J]. Progress in Geography, 2019, 37(1):1-7.
傅伯杰 . 新时代自然地理学发展的思考[J]. 地理科学进展,2019,37(1):1-7.
38 Zhu Zhenda , Liu Shu , Di Xingmin . Desertification and Its Control in China[M]. Beijing: Science Press, 1989.
朱震达, 刘恕, 邸醒民 . 中国的沙漠化及其治理[M]. 北京: 科学出版社, 1989.
39 Zhu Zhenda , Chen Guangting . Sand Land Desertification in China[M]. Beijing: Science Press, 1994.
朱震达, 陈广庭 . 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1994.
40 Brookfield M E , Ahlbrandt T S . Aeolian Sediments and Processes[M]. Amsterdam: Elsevier, 1983.
41 Glennie K W . Lower permian rgtliegend desert sedimentation in the North Sea area[J]. Developments in Sedimentology, 1983, 38: 521-541.
42 Dong Guangrong , Li Sen , Li Baosheng , et al . A preliminary study on formation and evolution of deserts in China[J]. Journal of Desert Research, 1991, 11(4): 23-32.
董光荣, 李森, 李保生, 等 . 1991. 中国沙漠形成演化的初步研究[J]. 中国沙漠, 1991, 11(4): 23-32.
43 Pye K . Aeolian Dust and Dust Deposits[M]. London: Academic Press, 1987.
44 Lu H Y , Wang X Y , Wang X Y , et al . Formation and evolution of Gobi Desert in central and eastern Asia[J]. Earth-Science Reviews, 2019, 194: 251-263.
45 Zhu Zhenda , Chen Zhiping , Wu Zheng , et al . Study on wind-sand geomorphology of Taklimakan Desert[M]. Beijing: Science Press, 1981.
朱震达, 陈治平, 吴正, 等 . 塔克拉玛干沙漠风沙地貌研究[M]. 北京: 科学出版社, 1981.
46 Mainguet M . Space observation of Saharan aeolian dynamics[M]//Deserts and Arid Lands. Dordrecht: Springer, 1984: 59-77.
47 Zhao Jie , Dong Zhibao , Li Chao , et al . The near-surface wind conditions of barchan dunes in Kasier crater on Mars[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 133-139.
赵杰, 董治宝, 李超, 等 . 火星 Kaiser 陨石坑新月形沙丘近表层风况特征[J]. 干旱区资源与环境, 2019, 33(9): 133-139.
48 Wang Xunming , Li Jinchang , Lang Lili . The Formation and Evolution of Shurb Sand Dunes and Their Response to Environmental Change in Arid Regions of China[M]. Beijing: Science Press, 2017.
王训明, 李晋昌, 郎丽丽 . 中国干旱版干旱区灌丛沙丘的形成演化及其对环境变化的响应[M]. 北京: 科学出版社, 2017.
49 IPCC . Climate Change 2014[R]. Synthesis Report, 2014.
50 IPCC . Global Warming of 1.5 oC[R]. IPCC Special Report, 2018.
51 IPCC . Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Degradation Land , Sustainable Land Management, security Food , and Greenhouse Gas Fluxes in Terrestrial Ecosystems[R]. Summary for Policymakers, Approved Draft, 2019.
52 Breckle S W , Yair A , Veste M . Arid Dune Ecosystems: The Nizzana Sands in the Negev Desert[M]. Heidelberg: Springer, 2008.
53 Wainwright J . Desert ecogeomorphology[M]//Geomorphology of Desert Environments. Berlin: Springer, 2009.
54 Xiao Long , Ronald Greeley , Zeng Zuoxun , et al . Methodology, achievements and prospects of comparative planetary geology[J]. Geological Science and Technology Information, 2008, 27(3): 1-13.
肖龙, Ronald Greeley , 曾佐勋, 等 . 比较行星地质学的研究方法、现状和展望[J]. 地质科技情报, 2008, 27(3): 1-13.
55 Head J W , Solomon S C . Tectonic evolution of the terrestrial planets[J]. Science, 1981, 213(4 503): 62-76.
56 Hayes A G . Dunes across the solar system [J]. Science, 2018, 360: 960-961.
57 Greeley R , Iversen J D . Wind as a Geological Process on Earth, Mars, Venus and Titan[M]. Cambridge: Cambridge University Press, 1985.
58 Garvin J B . Landing induced dust clouds on Venus and Mars[C]// Lunar & Planetary Science Conference. Lunar and Planetary Science Conference Proceedings, 1982.
59 Li Jiyan , Dong Zhibao . Research progress of aeolian landforms on Mars[J]. Journal of Desert Research, 2016, 36(4): 951-961.
李继彦, 董治宝 . 火星风沙地貌研究进展[J]. 中国沙漠, 2016, 36(4): 951-961.
60 Fenton L K . Dune migration and slip face advancement in the Rabe Crater dune field, Mars[J]. Geophysical Research Letters, 2006, 33(20): L20201.
61 Bourke M C , Edgett K S , Cantor B A . Recent aeolian dune change on Mars[J]. Geomorphology, 2008, 94(1/2): 247-255.
62 Zimbelman J R , Iii R P , Williams S H , et al . The rate of granule ripple movement on Earth and Mars[J]. Icarus, 2009, 203(1): 71-76.
63 Edgett K S , Christensen P R . The particle size of Martial aeolian dunes[J]. Journal of Geophysical Research: Planets, 1991, 96(E5): 22 765-22 776.
64 Basilevsky A T , Head J W . The surface of Venus[J]. Reports on Progress in Physics, 2003, 6(10): 1 699-1 734.
65 Arvidson R E , Baker V R , Elachi C , et al . Magellan: Initial analysis of Venus surface modification[J]. Science, 1991, 252(5 003): 270-275.
66 Greeley R , Bender K , Thomas P E , et al . Wind-related features and processes on Venus: Summary of magellan results[J]. Icarus, 1995, 115(2): 399-420.
67 Lorenz R D , Wall S , Radebaugh J , et al . The sand seas of Titan: Cassini radar observations of longitudinal dunes[J]. Science, 2006, 312(5 774): 724-727.
68 Zimbelman J R . Transverse aeolian ridges on Mars: First results from HiRISE images [J]. Geomorphology, 2010, 121(1): 22-29.
[1] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[2] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[3] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[6] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[7] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[8] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[9] 祝民强,周万蓬,胡全一. 火星快车OMEGA高光谱探测矿物组成的新进展[J]. 地球科学进展, 2010, 25(7): 691-697.
[10] 孙广友. 火星探测器着陆区地貌环境特征初释[J]. 地球科学进展, 2005, 20(3): 366-370.
[11] 倪怀玮,郑永飞. 火星生命研究的进展与前景[J]. 地球科学进展, 2002, 17(4): 515-520.
[12] 王跃. 风沙地貌学研究与展望[J]. 地球科学进展, 1994, 9(6): 37-40.
[13] 邹学勇;董光荣. 风沙物理学的发展与展望[J]. 地球科学进展, 1993, 8(6): 44-49.
阅读次数
全文


摘要