地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 515 -520. doi: 10.11867/j.issn.1001-8166.2002.04.0515

综述与评述 上一篇    下一篇

火星生命研究的进展与前景
倪怀玮,郑永飞   
  1. 中国科学技术大学地球和空间科学系,安徽 合肥 230026
  • 收稿日期:2001-10-16 修回日期:2002-03-25 出版日期:2002-12-20
  • 通讯作者: 倪怀玮(1981-),男,安徽泗县人,硕士研究生,主要从事地球化学研究.E-mail:yfzheng@ustc.edu.cn E-mail:yfzheng@ustc.edu.cn

PROGRESS IN STUDIES OF MARTIAN LIFE

NI  Huai-wei, ZHENG  Yong-fei   

  1. Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
  • Received:2001-10-16 Revised:2002-03-25 Online:2002-12-20 Published:2002-08-01

关于火星是否存在或曾经存在生命的争论由来已久。有人以ALH84001火星陨石新鲜破裂面上的大量碳酸盐小球体和多环芳香烃(PAHs)为主要依据,推论火星至少在13~36亿 aBP前很可能有生命形态存在。然而,很多人认为ALH84001陨石的各种特性可以是非生物成因的。由于地球上的生物在超过115℃的温度下很难存活(火星可与之类比),争论的焦点逐渐集中在碳酸盐球体的形成温度上。也有研究者关注该陨石上有机物质的来源问题。对ALH84001陨石的综合学科研究提出了互相矛盾的证据。综述了自1996年以来在国外各种主要期刊上发表的关于 ALH84001陨石与火星生命的研究成果(也包括了一些对其他火星陨石的研究),认为目前尚不能断言火星生命存在与否。对火星继续深入探索以获取进一步的证据是十分必要的。以美国国家航空和宇航局(NASA)Odys sey宇宙飞船起始的火星探测计划将引发新一轮火星生命研究的热潮。

The controversy over life-past on Mars, or perhaps present, has being gone for a long time. Someone concluded that some forms of life must have been on Mars at least 1.3 to 3.6 billion years before. This was based on the large quantities of carbonate globules and polycyclic aromatic hydrocarbons(PAHs) found in ALH84001 mteorite. But many people ascribe all characters in ALH84001 to abiological origins. The focus of  discussions gradually concentrates on the temperature at which the carbonate globules formed, since there is little chance that lives on the Earth can survive temperature above 115℃(Mars could be analogized). There are also researchers who concern the origin of  organism in  the meteorite. Multi-subject studies have given contradictive interpretations. This article summarizes the research results on ALH84001 meteorite and Martian life which have been published in many major international journals since 1996(some studies on other meteorites also included),  considering that it is impossible to conclude whether there was Martian life or not. Keeping on explorating Mars thoroughly to get more proofs is highly necessary. The Mars exploration plans beginning with NASA's 2001 Mars Odyssey will inspire a second upsurge on Martian life study.

中图分类号: 

[1] Jiang Shaoyong. Recent advances in the study of Mars[J]. Earth Science Frontiers, 1998, 5(1-2): 49-54.
[2] Mckay D S, Gibson E K Jr, Thomas-Keprta K L,et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996, 273: 924-930.
[3] Gibson E K Jr, Mckay D S, Thomas-Keprta K,et al. The case for relic life on Mars[J]. Scientific American, 1997, 277(6): 58-67.
[4] Gibbs W W, Powell C S. Bugs in the data? (The controversy over Martian life is just beginning)[J]. Scientific American, 1996, 275(4): 12-13.
[5] Mckay D S, Gibson E K Jr, Thomas-keprta K L,et al. No “nanofossils” in Martian meteorite-Reply[J]. Nature, 1997, 390(6659): 455-456.
[6] Gillet P, Barrat J A, Heulin T,et al. Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks[J]. Earth and Planetary Science Letters, 2000, 175(3-4): 161-167.
[7] Harvey R P, McSween H Y Jr. A possible high-temperature prigin for the carbonates in the Martian meteorite ALH84001[J]. Nature, 1996, 382: 49-51.
[8] Zolotov M Y, Shock E L. An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases[J]. Meteoritics & Planetary Sciences, 2000, 35(3): 629-638.
[9] Scott E R D, Yamaguchi A, Krot A N, Petroligical evidence for shock melting of carbonates in the Martian meteorite ALH84001[J]. Nature, 1997, 387: 377-379.
[10]  Jull A J T, Courtney C, Jeffrey D A,et al. Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001[J]. Science, 1998, 279(5 349): 366-369.
[11]  Bada J L, Glavin D P, McDonald G D, et al. A search for endogenous amino acids in Martian meteorite ALH84001[J]. Science, 1998, 279(5 349): 362-365.
[12]  Barrat J A, Gillet P, Lecuyer C, et al. Formation of carbonates in the Tatahouine meteorite[J]. Science, 1998, 280(5 362): 412-414.
[13]  Golden D C, Ming D W, Schwandt C S,et al. A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001[J]. American Mineralogist,  2001, 86(3): 370-375.
[14]  Valley J W, Eiler J M, Graham C M,et al. Low temperature carbonate concretions in the Martian meteorite ALH84001:evidence from stable isotopes and mineralogy[J]. Science, 1997,  275(5 306): 1 633-1 638.
[15]  Kirschvink J L, Maine A T, Vali H. Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH84001[J]. Science, 1997, 275(5 306): 1 629-1 633.
[16]  Profai M, Buseck P R, Bazylinski D A,et al. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers[J]. Science, 1998, 280(5 365): 880-883.
[17]  Borg L E, Connelly J N, Nyquist L E,et al. The age of the carbonates in Martian meteorite ALH84001[J]. Science, 1999, 286(5 437): 90-94.
[18]  Farquhar J, Savarino J, Jackson T L,et al. Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites[J]. Nature, 2000, 404(6 773): 50-52.
[19]  Farquhar J, Thiemens M H, Jackson T L,et al. Atmosphere-Sulphur interactions on Mars: 17O measurements of carbonate from ALH84001[J]. Science, 1998, 280(5 369): 1 580-1 582.
[20]  Becker L, Popp B, Rust T,et al. Life sciences: new insights into complex organics in space[J]. Advances in Space Research, 1999, 24(4): 477-488.
[21]  Weiss B P, Kirschvink J L, Baudenbacher F J,et al. A low temperature transfer of ALH84001 from Mars to Earth[J]. Science, 2000, 290(5492): 791-795.
[22]  Kent A J R, Hutcheon I D, Ryerson F J, et al. The temperature of formation of carbonate in Martian meteorite ALH84001: Constraints from cation diffusion[J]. Geochimica and Cosmochimica Acta, 2001, 65(2): 311-321.
[23]  Taylor A P, Barry J C, Webb R I. Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001[J]. Journal of Microscopy-Oxford, 2001,  201: 84-106.
[24]  Ouyang Ziyuan, Zou Yongliao, Liu Jianzhong, et al. Review and prospect on some research fields in geochemistry[J]. Advance in Earth Sciences, 2001, 16(5): 617-623.[欧阳自远, 邹永廖, 刘建忠,等.地球化学若干领域的回顾与展望[J]. 地球科学进展, 2001, 16(5): 617-623. ]
[25]  Wang Daode. Inspiration from study of Antarctic meteorites: Ejection and delivered time of Martian meteorites and review for traces of ancient Martian life[J]. Chinese Journal of Polar Research, 1999, 11(1): 46-52. [王道德. 南极陨石研究的启示:火星陨石的溅射和运移时间及古生命遗迹的综述[J].极地研究, 1999, 11(1): 46-52. ]

[1] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[2] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[5] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[6] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[7] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[8] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[9] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[10] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[11] 祝民强,周万蓬,胡全一. 火星快车OMEGA高光谱探测矿物组成的新进展[J]. 地球科学进展, 2010, 25(7): 691-697.
[12] 王绪本,毛立峰,李文超,林春. 灾害救助超宽带电磁生命探测方法的模拟研究[J]. 地球科学进展, 2008, 23(5): 541-545.
[13] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[14] 张志强. 地球难以承载人类重负——《生命行星报告2004》解读[J]. 地球科学进展, 2005, 20(4): 378-383.
[15] 孙广友. 火星探测器着陆区地貌环境特征初释[J]. 地球科学进展, 2005, 20(3): 366-370.
阅读次数
全文


摘要