地球科学进展 ›› 2021, Vol. 36 ›› Issue (2): 125 -138. doi: 10.11867/j.issn.1001-8166.2021.023

所属专题: “火星地貌”虚拟专刊

综述与评述 上一篇    下一篇

侵蚀型沙丘:来自火星的启示
董治宝( ), 李超, 吕萍, 胡光印   
  1. 陕西师范大学行星风沙科学研究院,陕西 西安 710119
  • 收稿日期:2020-11-18 修回日期:2021-01-28 出版日期:2021-04-13
  • 基金资助:
    国家自然科学基金项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);“巴丹吉林沙漠高大沙山系统的形成”(41871008)

Eroded Dunes: Inspiration from Mars

Zhibao DONG( ), Chao LI, Ping LÜ, Guangyin HU   

  1. Planetary Aeolian Research Institute,Shaanxi Normal University,Xi'an 710119,China
  • Received:2020-11-18 Revised:2021-01-28 Online:2021-04-13 Published:2021-04-19
  • About author:Dong Zhibao (1966-), male, Hengshan County, Shaanxi Province, Professor. Research areas include physics of blown sand and aeolian geomorphology. E-mail: zbdong@snnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Weathering rate of the dry denudated mountains surrounding the Tarim Basin"(41930641);"Formation of the meagadune system in China's Badain Jaran Sand Sea"(41871008)

风沙地貌分为风积地貌和风蚀地貌两大范畴,风积地貌即指各种沙丘。沙丘地貌虽然是风沙堆积的产物,但其形态和类型是风沙蚀积时空变化规律的表现,在堆积形成之后,风蚀作用在沙丘形态塑造过程中有时会具有重要作用,从而形成独特的侵蚀型沙丘。但由于有悖于传统风积地貌的理解,侵蚀型沙丘长期被忽视。然而,在火星沙丘地貌的形态和分布规律研究中,已发现大量的与地球常见沙丘地貌具有微妙差异的沙丘地貌形态,并将其归咎于沙源供应不充分的发育环境。重温法国学者Mainguet沙丘分类方案中关于侵蚀型沙丘的论述,以及经典风沙地貌学理论关于沙丘形态控制因素的概念框架,明确指出研究侵蚀型沙丘的必要性。系统分析了火星沙丘地貌形态特征后,初步辨认出火星的10种侵蚀型沙丘,分析其形态特征、发育环境及可能的形成机制。地球干旱区广袤的盐碱地是极有可能发育侵蚀型沙丘的地区,具有类似火星沙源供应不足的环境,在中国柴达木盆地沙漠中发现了多种侵蚀型沙丘地貌。据此推断,侵蚀型沙丘在地球上比较普遍,其研究对发展风沙地貌学理论具有重要意义,对中国未来的火星探测与研究具有参考意义。

Aeolian landforms are divided into two categories: wind deposition landforms and wind erosion landforms. The former refers to various types of sand dunes with their shapes being determined by the spatio-temporal variation of wind erosion and deposition. Wind erosion may play a significant role in reshaping the cumulated dunes which results in the formation of eroded dunes. This discovery is contrary to traditional understanding, therefore, eroded dunes have been ignored for a long time. However, many Martian dunes with subtle differences from dunes on the earth due to limited sediment supply have been found. We reviewed the description of eroded dunes by French M. Mainguet, and conceptual framework of controlling factors on dune morphology, and then pointed out clearly the necessity of studying eroded dunes. After systematic study on Martian dunes, we found ten types of eroded dunes, and then analyzed the morphology, development environment and possible formation mechanism. The vast saline-alkali land in the arid area of the earth which is similar to the limited sand supply environment on Mars is most likely to develop eroded dunes. Based on this, it can be inferred that eroded dunes are common on the earth, and the study on them is of great significance to the development of aeolian geomorphology theories and the Mars exploration in China.

中图分类号: 

图1 沙丘类型与风、沙源供应和植被的关系(据参考文献[ 8 ]修改)
Fig.1 Relationship between dune forms, strength of the wind, sediment availability and vegetation coverage (modified after reference [ 8 ])
图1 沙丘类型与风、沙源供应和植被的关系(据参考文献[ 8 ]修改)
Fig.1 Relationship between dune forms, strength of the wind, sediment availability and vegetation coverage (modified after reference [ 8 ])
图2 澳大利亚沙漠沙丘类型与风向变率(RDP/DP)及沉积物等效厚度(EST)的关系(据参考文献[ 11 ]修改)
Fig.2 Relationship between dune forms, wind directional variability (RDP/DP), and Equivalent Sand Thickness (EST) in the Australian dune fields (modified after reference [ 11 ])
图2 澳大利亚沙漠沙丘类型与风向变率(RDP/DP)及沉积物等效厚度(EST)的关系(据参考文献[ 11 ]修改)
Fig.2 Relationship between dune forms, wind directional variability (RDP/DP), and Equivalent Sand Thickness (EST) in the Australian dune fields (modified after reference [ 11 ])
图3 纳米布沙漠沙丘类型与风向变率(RDP/DP)及沉积物等效厚度 (EST)的关系(据参考文献[ 13 ]修改)
Fig.3 Relationship between dune forms, wind directional variability (RDP/DP), and Equivalent Sand Thickness (EST) in the Namib dune fields (modified after reference [ 13 ])
图3 纳米布沙漠沙丘类型与风向变率(RDP/DP)及沉积物等效厚度 (EST)的关系(据参考文献[ 13 ]修改)
Fig.3 Relationship between dune forms, wind directional variability (RDP/DP), and Equivalent Sand Thickness (EST) in the Namib dune fields (modified after reference [ 13 ])
图4 沙丘类型与风向变率和沙源供应度关系的概念模型(据参考文献[ 7 ]修改)
Fig.4 Conceptual model of relationship between dune forms, wind directional variability, and sediment availability (modified after reference [ 7 ])
图4 沙丘类型与风向变率和沙源供应度关系的概念模型(据参考文献[ 7 ]修改)
Fig.4 Conceptual model of relationship between dune forms, wind directional variability, and sediment availability (modified after reference [ 7 ])
图5 火星典型的砂岩化古沙丘(来源:NASA/JPL/UA
(a)阿波里那沟南部砂岩化古沙丘(HiRISE影像PSP_010453_1675_RED,中心点位置:12.60°S, 178.08°E);(b)科普莱特斯深谷东部砂岩化古沙丘(HiRISE影像ESP_025389_1690_RED,中心点位置:11.14°S, 284.90°E);箭头代表沙丘发育风向
Fig.5 Typical fossilized dunes on Marssource: NASA/JPL/UA
(a) Fossilized dunes in the south of Apollinaris Sulci (HiRISE image PSP_010453_1675_RED, center point: 12.60°S, 178.08°E); (b) Fossilized dunes in the east of Coprates Chasma (HiRISE image ESP_025389_1690_RED, center point: 11.14°S, 284.90°E);Arrows represent the wind direction of dune development
图5 火星典型的砂岩化古沙丘(来源:NASA/JPL/UA
(a)阿波里那沟南部砂岩化古沙丘(HiRISE影像PSP_010453_1675_RED,中心点位置:12.60°S, 178.08°E);(b)科普莱特斯深谷东部砂岩化古沙丘(HiRISE影像ESP_025389_1690_RED,中心点位置:11.14°S, 284.90°E);箭头代表沙丘发育风向
Fig.5 Typical fossilized dunes on Marssource: NASA/JPL/UA
(a) Fossilized dunes in the south of Apollinaris Sulci (HiRISE image PSP_010453_1675_RED, center point: 12.60°S, 178.08°E); (b) Fossilized dunes in the east of Coprates Chasma (HiRISE image ESP_025389_1690_RED, center point: 11.14°S, 284.90°E);Arrows represent the wind direction of dune development
图6 火星类黏土型沙丘(来源:NASA/JPL/UA
(a)火星赫谢尔陨击坑北部类黏土型沙丘;(b)图(a)中黑色方框区域新月形沙丘(HiRISE ESP_036880_1760_RED,中心位置:14.8°S, 127.9°E);箭头代表沙丘发育风向
Fig.6 Clay-like dunes on the Marssource: NASA/JPL/UA
(a) Clay-like dunes in the north of Herschel Crater;(b) Barchan dune of the black box in (a) (HiRISE ESP_036880_1760_RED, center point: 14.8°S, 127.9°E);Arrows represent the winddirection of dune development
图6 火星类黏土型沙丘(来源:NASA/JPL/UA
(a)火星赫谢尔陨击坑北部类黏土型沙丘;(b)图(a)中黑色方框区域新月形沙丘(HiRISE ESP_036880_1760_RED,中心位置:14.8°S, 127.9°E);箭头代表沙丘发育风向
Fig.6 Clay-like dunes on the Marssource: NASA/JPL/UA
(a) Clay-like dunes in the north of Herschel Crater;(b) Barchan dune of the black box in (a) (HiRISE ESP_036880_1760_RED, center point: 14.8°S, 127.9°E);Arrows represent the winddirection of dune development
图7 火星北极地区落沙坡遭受侵蚀的沙丘(来源:NASA/JPL/UA
(a)新月形沙丘(HiRISE ESP_017746_2860_RED,中心点位置:328.19°E, 73.56°N);(b)新月形沙丘链(HiRISE ESP_036404_2590_RED,中心点位置:143.08°E, 79.01°N);箭头代表沙丘发育风向
Fig.7 Dunes with eroded slip face in the North Polar region of Marssource: NASA/JPL/UA
(a) Barchan dunes (HiRISE ESP_017746_2860_RED, center point: 328.19°E, 73.56°N); (b) Barchanoid dunes (HiRISE ESP_036404_2590_RED, center point: 143.08°E, 79.01°N); Arrows represent the wind direction of dune development
图7 火星北极地区落沙坡遭受侵蚀的沙丘(来源:NASA/JPL/UA
(a)新月形沙丘(HiRISE ESP_017746_2860_RED,中心点位置:328.19°E, 73.56°N);(b)新月形沙丘链(HiRISE ESP_036404_2590_RED,中心点位置:143.08°E, 79.01°N);箭头代表沙丘发育风向
Fig.7 Dunes with eroded slip face in the North Polar region of Marssource: NASA/JPL/UA
(a) Barchan dunes (HiRISE ESP_017746_2860_RED, center point: 328.19°E, 73.56°N); (b) Barchanoid dunes (HiRISE ESP_036404_2590_RED, center point: 143.08°E, 79.01°N); Arrows represent the wind direction of dune development
图8 火星奥林匹亚沙漠峡谷冰冻障碍物沙丘(来源:NASA/JPL/UA
HiRISE SP_036669_2610_RED,中心点位置:102.22°E,80.81°N;箭头代表沙丘发育风向
Fig.8 Frosted dunes in Olympia Canyon of Mars (source: NASA/JPL/UA)
HiRISE SP_036669_2610_RED,center point:102.22°E,80.81°N;Arrows represent the wind direction of dune development
图8 火星奥林匹亚沙漠峡谷冰冻障碍物沙丘(来源:NASA/JPL/UA
HiRISE SP_036669_2610_RED,中心点位置:102.22°E,80.81°N;箭头代表沙丘发育风向
Fig.8 Frosted dunes in Olympia Canyon of Mars (source: NASA/JPL/UA)
HiRISE SP_036669_2610_RED,center point:102.22°E,80.81°N;Arrows represent the wind direction of dune development
图9 火星北极博勒拉峡谷拉长型沙丘(来源:NASA/JPL/UA
HiRISE SP_026626_2645_RED,中心点位置:322.56°E,84.20°N;箭头代表沙丘发育风向
Fig.9 Elongated dunes in Chasma Boreale (source: NASA/JPL/UA)
HiRISE SP_026626_2645_RED,center point:322.56°E,84.20°N;Arrows represent the wind direction of dune development
图9 火星北极博勒拉峡谷拉长型沙丘(来源:NASA/JPL/UA
HiRISE SP_026626_2645_RED,中心点位置:322.56°E,84.20°N;箭头代表沙丘发育风向
Fig.9 Elongated dunes in Chasma Boreale (source: NASA/JPL/UA)
HiRISE SP_026626_2645_RED,center point:322.56°E,84.20°N;Arrows represent the wind direction of dune development
图10 火星直线形沙丘(来源:NASA/JPL/UA
(a)火星北极博勒拉峡谷直线形沙丘(HiRISE影像ESP_046168_2645_RED,中心点位置:84.62°N, 333.79°E);(b)直线型沙丘的早期阶段(HiRISE影像ESP_045100_2650_RED,中心点位置:84.79°N, 333.76°E);箭头代表沙丘发育风向
Fig.10 Rectilinear dunes on Marssource: NASA/JPL/UA
(a) Rectilinear dunes in Chasma Boreale (HiRISE ESP_046168_2645_RED, center point: 84.62°N, 333.79°E); (b) Early stages of the rectilinear dunes (HiRISE ESP_045100_2650_RED, center point: 84.79°N, 333.76°E); Arrows represent the wind direction of dune development
图10 火星直线形沙丘(来源:NASA/JPL/UA
(a)火星北极博勒拉峡谷直线形沙丘(HiRISE影像ESP_046168_2645_RED,中心点位置:84.62°N, 333.79°E);(b)直线型沙丘的早期阶段(HiRISE影像ESP_045100_2650_RED,中心点位置:84.79°N, 333.76°E);箭头代表沙丘发育风向
Fig.10 Rectilinear dunes on Marssource: NASA/JPL/UA
(a) Rectilinear dunes in Chasma Boreale (HiRISE ESP_046168_2645_RED, center point: 84.62°N, 333.79°E); (b) Early stages of the rectilinear dunes (HiRISE ESP_045100_2650_RED, center point: 84.79°N, 333.76°E); Arrows represent the wind direction of dune development
图11 火星串珠状沙丘来源(来源:NASA/JPL/UA
(a)火星北极奥林匹亚沙漠西南部串珠状新月形沙丘链;(b)为图(a)中黑色方框区域的影像(CTX d16_033305_2586_xi_78n220w,中心点位置:139.62°E, 78.36°N);箭头代表沙丘发育风向
Fig.11 Beaded dunes on Marssource: NASA/JPL/UA
(a) Beaded barchanoid dunes in the southeast of the Olympia Desert; (b) is the image of black box in (a) (CTX d16_033305_2586_xi_78n220w, center point: 139.62°E, 78.36°N); Arrows represent the wind direction of dune development
图11 火星串珠状沙丘来源(来源:NASA/JPL/UA
(a)火星北极奥林匹亚沙漠西南部串珠状新月形沙丘链;(b)为图(a)中黑色方框区域的影像(CTX d16_033305_2586_xi_78n220w,中心点位置:139.62°E, 78.36°N);箭头代表沙丘发育风向
Fig.11 Beaded dunes on Marssource: NASA/JPL/UA
(a) Beaded barchanoid dunes in the southeast of the Olympia Desert; (b) is the image of black box in (a) (CTX d16_033305_2586_xi_78n220w, center point: 139.62°E, 78.36°N); Arrows represent the wind direction of dune development
图12 火星北极奥林匹亚沙漠西南部碰撞新月形沙丘链(来源:NASA/JPL/UA
CTX p02_001659_2594_xn_79n227w,中心点位置:134.52°E,77.51°N;箭头代表沙丘发育风向
Fig.12 Merged Barchanoid dunes in the southeast of the Olympia Desert (source: NASA/JPL/UA)
CTX p02_001659_2594_xn_79n227w,center point:134.52°E,77.51°N;Arrows represent the wind direction of dune development
图12 火星北极奥林匹亚沙漠西南部碰撞新月形沙丘链(来源:NASA/JPL/UA
CTX p02_001659_2594_xn_79n227w,中心点位置:134.52°E,77.51°N;箭头代表沙丘发育风向
Fig.12 Merged Barchanoid dunes in the southeast of the Olympia Desert (source: NASA/JPL/UA)
CTX p02_001659_2594_xn_79n227w,center point:134.52°E,77.51°N;Arrows represent the wind direction of dune development
图13 火星北极奥林匹亚沙漠西部片状新月形沙丘链(来源:NASA/JPL/UA
CTX B01_009934_2811_XN_78N226W,中心点位置:135.45°E,79.48°N;箭头代表沙丘发育风向
Fig.13 Lamellate Barchanoid dunes in the southeast of the Olympia Desert (source: NASA/JPL/UA)
CTX B01_009934_2811_XN_78N226W,center point:135.45°E,79.48°N;Arrows represent the wind direction of dune development
图13 火星北极奥林匹亚沙漠西部片状新月形沙丘链(来源:NASA/JPL/UA
CTX B01_009934_2811_XN_78N226W,中心点位置:135.45°E,79.48°N;箭头代表沙丘发育风向
Fig.13 Lamellate Barchanoid dunes in the southeast of the Olympia Desert (source: NASA/JPL/UA)
CTX B01_009934_2811_XN_78N226W,center point:135.45°E,79.48°N;Arrows represent the wind direction of dune development
图14 火星“幽灵沙丘”(来源:NASA/JPL/UA
(a)海拉斯盆地“幽灵沙丘”(CTX P19_008558_1398_XI_40S281W,中心点位置:93.16°E, 40.94°S);(b)华莱士撞击坑北部“幽灵沙丘”(HiRISE ESP_059708_1305_RED,中心位置:113.05°E, 49.34°S);(c)夜迷宫地区“幽灵沙丘”(HiRISE ESP_048967_1720_RED,中心位置:267.18°E, 7.89°S);箭头代表沙丘发育风向
Fig.14 Ghost dunes on Marssource: NASA/JPL/UA
(a) Ghost dunes in Hellas Basin (CTX P19_008558_1398_XI_40S281W, center point: 93.16°E, 40.94°S); (b) Ghost dunes in the north of Wallace Crater (HiRISE ESP_059708_1305_RED, center point: 113.05°E, 49.34°S); (c) Ghost dunes in Noctis Labyrinthus (HiRISE ESP_048967_1720_RED, center point: 267.18°E, 7.89°S); Arrows represent the wind direction of dune development
图14 火星“幽灵沙丘”(来源:NASA/JPL/UA
(a)海拉斯盆地“幽灵沙丘”(CTX P19_008558_1398_XI_40S281W,中心点位置:93.16°E, 40.94°S);(b)华莱士撞击坑北部“幽灵沙丘”(HiRISE ESP_059708_1305_RED,中心位置:113.05°E, 49.34°S);(c)夜迷宫地区“幽灵沙丘”(HiRISE ESP_048967_1720_RED,中心位置:267.18°E, 7.89°S);箭头代表沙丘发育风向
Fig.14 Ghost dunes on Marssource: NASA/JPL/UA
(a) Ghost dunes in Hellas Basin (CTX P19_008558_1398_XI_40S281W, center point: 93.16°E, 40.94°S); (b) Ghost dunes in the north of Wallace Crater (HiRISE ESP_059708_1305_RED, center point: 113.05°E, 49.34°S); (c) Ghost dunes in Noctis Labyrinthus (HiRISE ESP_048967_1720_RED, center point: 267.18°E, 7.89°S); Arrows represent the wind direction of dune development
图15 火星北极新月形沙丘上风向的残余胶结层(来源:NASA/JPL/UA
(a)博勒拉峡谷沙丘胶结层(HiRISE PSP_001374_2650_RED,中心点位置:338.95°E, 84.95°N; 白色箭头指示其位置);(b)奥林匹亚沙漠东南部沙丘胶结层 (CTX B01_009934_2811_XN_78N226W,中心点位置:134.46°E,79.12°N),黑色箭头指示其位置;右上角圆圈中箭头代表沙丘发育风向
Fig.15 Residual cemented layer at the upwind of barchan dunes in the north polar region of Mars (source: NASA/JPL/UA
(a)Residual cemented layer in Chasma Boreale(HiRISE PSP_001374_2650_RED,center point:338.95°E,84.95°N; White arrows indicate the locations);(b)Residual cemented layer in the southeast of Olympia Desert(CTX B01_009934_2811_XN_78N226W,center point:134.46°E,79.12°N;Black Arrows indicate the locations);Arrows in the circle of upper right corner represent the wind direction of dune development
图15 火星北极新月形沙丘上风向的残余胶结层(来源:NASA/JPL/UA
(a)博勒拉峡谷沙丘胶结层(HiRISE PSP_001374_2650_RED,中心点位置:338.95°E, 84.95°N; 白色箭头指示其位置);(b)奥林匹亚沙漠东南部沙丘胶结层 (CTX B01_009934_2811_XN_78N226W,中心点位置:134.46°E,79.12°N),黑色箭头指示其位置;右上角圆圈中箭头代表沙丘发育风向
Fig.15 Residual cemented layer at the upwind of barchan dunes in the north polar region of Mars (source: NASA/JPL/UA
(a)Residual cemented layer in Chasma Boreale(HiRISE PSP_001374_2650_RED,center point:338.95°E,84.95°N; White arrows indicate the locations);(b)Residual cemented layer in the southeast of Olympia Desert(CTX B01_009934_2811_XN_78N226W,center point:134.46°E,79.12°N;Black Arrows indicate the locations);Arrows in the circle of upper right corner represent the wind direction of dune development
图16 火星博勒拉峡谷具有弧形胶结层的新月形沙丘(来源:NASA/JPL/UA
HiRISE ESP_026784_2645_RED,中心点位置:323.5°E,84.23°N;箭头代表沙丘发育风向
Fig.16 Barchans with arched cemented layer in the Chasma Boreale (source: NASA/JPL/UA
HiRISE ESP_026784_2645_RED,center point:323.5°E,84.23°N;Arrows represent the wind direction of dune development
图16 火星博勒拉峡谷具有弧形胶结层的新月形沙丘(来源:NASA/JPL/UA
HiRISE ESP_026784_2645_RED,中心点位置:323.5°E,84.23°N;箭头代表沙丘发育风向
Fig.16 Barchans with arched cemented layer in the Chasma Boreale (source: NASA/JPL/UA
HiRISE ESP_026784_2645_RED,center point:323.5°E,84.23°N;Arrows represent the wind direction of dune development
图17 火星沙丘脊部胶结层(来源:NASA/JPL/UA
(a)火星北极巨型新月形沙丘脊部胶结层(箭头代表沙丘发育风向);(b)为图a中黑色方框区域的影像,白色箭头指示硬化的脊(HiRISE ESP_018011_2565_RED,中心点位置:95.26°E, 76.22°N)
Fig.17 Cemented layer at the ridge of dunes on Mars sourceNASA/JPL/UA
(a) Cemented layer at the ridge of giant barchans in the north polar region of Mars (Arrows represent the wind direction of dune development); (b) The image of black box area in (a), white arrow indicates the cemented ridge (HiRISE ESP_018011_2565_RED, center point: 95.26°E, 76.22°N)
图17 火星沙丘脊部胶结层(来源:NASA/JPL/UA
(a)火星北极巨型新月形沙丘脊部胶结层(箭头代表沙丘发育风向);(b)为图a中黑色方框区域的影像,白色箭头指示硬化的脊(HiRISE ESP_018011_2565_RED,中心点位置:95.26°E, 76.22°N)
Fig.17 Cemented layer at the ridge of dunes on Mars sourceNASA/JPL/UA
(a) Cemented layer at the ridge of giant barchans in the north polar region of Mars (Arrows represent the wind direction of dune development); (b) The image of black box area in (a), white arrow indicates the cemented ridge (HiRISE ESP_018011_2565_RED, center point: 95.26°E, 76.22°N)
图18 柴达木盆地侵蚀型新月形沙丘(来源:Google Earth
中心点位置:93.77°E,37.11°N;箭头代表沙丘发育风向
Fig.18 Eroded Barchan dunes in the Qaidam Basin (source: Google Earth)
Center point:93.77°E,37.11°N; Arrows represent the wind direction of dune development
图18 柴达木盆地侵蚀型新月形沙丘(来源:Google Earth
中心点位置:93.77°E,37.11°N;箭头代表沙丘发育风向
Fig.18 Eroded Barchan dunes in the Qaidam Basin (source: Google Earth)
Center point:93.77°E,37.11°N; Arrows represent the wind direction of dune development
图19 柴达木盆地的不对称新月形沙丘(来源:Google Earth
中心点位置: 92.09°E,37.33°N;箭头代表沙丘发育风向
Fig.19 Asymmetrical Barchans in the Qaidam Basin (source: Google Earth)
Center point:92.09°E,37.33°N; Arrows represent the wind direction of dune development
图19 柴达木盆地的不对称新月形沙丘(来源:Google Earth
中心点位置: 92.09°E,37.33°N;箭头代表沙丘发育风向
Fig.19 Asymmetrical Barchans in the Qaidam Basin (source: Google Earth)
Center point:92.09°E,37.33°N; Arrows represent the wind direction of dune development
图20 柴达木盆地的长直线形沙丘(来源:Google Earth
中心点位置:93.90°E,37.04°N;箭头代表沙丘发育风向
Fig.20 Rectilinear dunes in the Qaidam Basin (source: Google Earth)
Center point:93.90°E,37.04°N; Arrows represent the wind direction of dune development
图20 柴达木盆地的长直线形沙丘(来源:Google Earth
中心点位置:93.90°E,37.04°N;箭头代表沙丘发育风向
Fig.20 Rectilinear dunes in the Qaidam Basin (source: Google Earth)
Center point:93.90°E,37.04°N; Arrows represent the wind direction of dune development
图21 柴达木盆地新月形沙丘与线形沙丘的共生现象(来源:Quick bird
052409506020_01_P001_PAN,中心点位置:93.77°E,37.10°N;箭头代表沙丘发育风向
Fig.21 Coexistence of barchans and linear dunes in the Qaidam Basin (source: Quick bird)
Center point:93.77°E,37.10°N;Arrows represent the wind direction of dune development
图21 柴达木盆地新月形沙丘与线形沙丘的共生现象(来源:Quick bird
052409506020_01_P001_PAN,中心点位置:93.77°E,37.10°N;箭头代表沙丘发育风向
Fig.21 Coexistence of barchans and linear dunes in the Qaidam Basin (source: Quick bird)
Center point:93.77°E,37.10°N;Arrows represent the wind direction of dune development
1 SCHATZ V, TSOAR H, DGETT K S, et al. Evidence for indurated sand dunes in the Martian north polar region[J]. Journal of Geophysical Research, 2006, 111(E4): E04006.
SCHATZ V, TSOAR H, DGETT K S, et al. Evidence for indurated sand dunes in the Martian north polar region[J]. Journal of Geophysical Research, 2006, 111(E4): E04006.
2 DONG Zhibao,LÜ Ping,LI Chao. Research methodology of Martian aeolian geomorphology[J]. Advances in Earth Science,2020,35(8):771-788.
DONG Zhibao,Lü Ping,LI Chao. Research methodology of Martian aeolian geomorphology[J]. Advances in Earth Science,2020,35(8):771-788.
董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
3 DONG Zhibao,LÜ Ping,LI Chao,et al. Characteristics and formation mechanism of wind streaks on Mars[J]. Advances in Earth Science,2020,35(9):902-911.
DONG Zhibao,Lü Ping,LI Chao,et al. Characteristics and formation mechanism of wind streaks on Mars[J]. Advances in Earth Science,2020,35(9):902-911.
董治宝, 吕萍, 李超, 等. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
董治宝, 吕萍, 李超, 等. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
4 DONG Zhibao,LÜ Ping,LI Chao,et al. Unique aeolian bedforms of Mars:Transverse Aeolian Ridges(TARs)[J]. Advances in Earth Science,2020,35(7):661-677.
DONG Zhibao,Lü Ping,LI Chao,et al. Unique aeolian bedforms of Mars:Transverse Aeolian Ridges(TARs)[J]. Advances in Earth Science,2020,35(7):661-677.
董治宝, 吕萍, 李超, 等. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
董治宝, 吕萍, 李超, 等. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
5 LI Chao, DONG Zhibao, LÜ Ping, et al. A morphological insight into the Martian dune geomorphology [J]. Chinese Science Bulletin, 2020, 65(1): 80-90.
LI Chao, DONG Zhibao, Lü Ping, et al. A morphological insight into the Martian dune geomorphology [J]. Chinese Science Bulletin, 2020, 65(1): 80-90.
李超, 董治宝, 吕萍, 等. 火星沙丘地貌的形态学窥究[J]. 科学通报, 2020, 65(1): 80-90.
李超, 董治宝, 吕萍, 等. 火星沙丘地貌的形态学窥究[J]. 科学通报, 2020, 65(1): 80-90.
6 MAINGUET M: A classification of dunes based on aeolian dynamics and the sand budget[M]//El-Baz F. Deserts and arid lands. Dordrecht: Springer Netherlands, 1984: 31-58.
MAINGUET M: A classification of dunes based on aeolian dynamics and the sand budget[M]//El-Baz F. Deserts and arid lands. Dordrecht: Springer Netherlands, 1984: 31-58.
7 LIVINGSTONE I, WARREN A. Aeolian geomorphology: An introduction[M]. Harlow: Addison Wesley Longman Ltd., 1996.
LIVINGSTONE I, WARREN A. Aeolian geomorphology: An introduction[M]. Harlow: Addison Wesley Longman Ltd., 1996.
8 HACK J T. Dunes of the Western Navajo Country[J]. Geographical Review, 1941, 31(2): 240-263.
HACK J T. Dunes of the Western Navajo Country[J]. Geographical Review, 1941, 31(2): 240-263.
9 MCKEE E D. A study of global sand seas[M]. Washington D C: U.S. Government Printing Office, 1979.
MCKEE E D. A study of global sand seas[M]. Washington D C: U.S. Government Printing Office, 1979.
10 FRYBERGER S G, DEAN G. Dune forms and wind regime[M]//Mckee E D. A study of global sand seas, Washington DC: U.S. Government Printing Office, 1979: 137-169.
FRYBERGER S G, DEAN G. Dune forms and wind regime[M]//Mckee E D. A study of global sand seas, Washington DC: U.S. Government Printing Office, 1979: 137-169.
11 WASSON R J, HYDE R. Factors determining desert dune type[J]. Nature, 1983, 304(5 924): 337-339.
WASSON R J, HYDE R. Factors determining desert dune type[J]. Nature, 1983, 304(5 924): 337-339.
12 LANCASTER N. Geomorphology of desert dunes[M]. New York: Routledge, 1995.
LANCASTER N. Geomorphology of desert dunes[M]. New York: Routledge, 1995.
13 LANCASTER N. The Namib sand and sea dune forms, processes and sediments[M]. Rotterdam: A. A. Balkema, 1989.
LANCASTER N. The Namib sand and sea dune forms, processes and sediments[M]. Rotterdam: A. A. Balkema, 1989.
14 KERR R C, NIGRA J O. Eolian sand control[J]. AAPG Bulletin, 1952, 36(8): 1 541-1 573.
KERR R C, NIGRA J O. Eolian sand control[J]. AAPG Bulletin, 1952, 36(8): 1 541-1 573.
15 BOURKE M C, GOUDIE A S. Varieties of barchan form in the Namib Desert and on Mars[J]. Aeolian Research, 2009, 1(1/2): 45-54.
BOURKE M C, GOUDIE A S. Varieties of barchan form in the Namib Desert and on Mars[J]. Aeolian Research, 2009, 1(1/2): 45-54.
16 EDGETT K S, MALIN M C. Examples of Martian Sandstone: Indurated, Lithified, and Cratered Eolian Dunes in MGS MOC Images [C]. 31st Annual Lunar and Planetary Science Conference, 2000.
EDGETT K S, MALIN M C. Examples of Martian Sandstone: Indurated, Lithified, and Cratered Eolian Dunes in MGS MOC Images [C]. 31st Annual Lunar and Planetary Science Conference, 2000.
17 ZIMBELMAN J R, BOURKE M C, LORENZ R D. Recent developments in planetary Aeolian studies and their terrestrial analogs[J]. Aeolian Research, 2013, 11: 109-126.
ZIMBELMAN J R, BOURKE M C, LORENZ R D. Recent developments in planetary Aeolian studies and their terrestrial analogs[J]. Aeolian Research, 2013, 11: 109-126.
18 CARDINALE M, SILVESTRO S, VAZ D A, et al. Present-day aeolian activity in Herschel Crater, Mars[J]. Icarus, 2016, 265: 139-148.
CARDINALE M, SILVESTRO S, VAZ D A, et al. Present-day aeolian activity in Herschel Crater, Mars[J]. Icarus, 2016, 265: 139-148.
19 FISHBAUGH K E. Chasma Boreale, Mars: Topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation[J]. Journal of Geophysical Research, 2002, 107(E3): 5 013.
FISHBAUGH K E. Chasma Boreale, Mars: Topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation[J]. Journal of Geophysical Research, 2002, 107(E3): 5 013.
20 DAY M D, CATLING D C. Dune casts preserved by Partial Burial: The first identification of Ghost Dune Pits on Mars[J]. Journal of Geophysical Research: Planets, 2018, 123(6): 1 431-1 448.
DAY M D, CATLING D C. Dune casts preserved by Partial Burial: The first identification of Ghost Dune Pits on Mars[J]. Journal of Geophysical Research: Planets, 2018, 123(6): 1 431-1 448.
21 DE Silva S L, SPAGNUOLO M G, BRIDGES N T, et al. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 912-1 929.
DE Silva S L, SPAGNUOLO M G, BRIDGES N T, et al. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 912-1 929.
22 XIAO Long, WANG Jiang, DANG Yanan, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84-101.
XIAO Long, WANG Jiang, DANG Yanan, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84-101.
23 DONG Zhibao. Atlass of Tibet Plateau aeolian geomorphology[M]. Xi'an: Xi'an Map Publishing House, 2017.
DONG Zhibao. Atlass of Tibet Plateau aeolian geomorphology[M]. Xi'an: Xi'an Map Publishing House, 2017.
董治宝. 青藏高原风沙地貌图集[M]. 西安: 西安地图出版社, 2017.
董治宝. 青藏高原风沙地貌图集[M]. 西安: 西安地图出版社, 2017.
24 RUBIN D M, RUBIN A M. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: Discussion[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 943-1 946.
RUBIN D M, RUBIN A M. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: Discussion[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 943-1 946.
[1] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[4] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[5] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[6] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[7] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[8] 王跃. 风沙地貌学研究与展望[J]. 地球科学进展, 1994, 9(6): 37-40.
[9] 邹学勇;董光荣. 风沙物理学的发展与展望[J]. 地球科学进展, 1993, 8(6): 44-49.
阅读次数
全文


摘要