地球科学进展 ›› 2014, Vol. 2014 ›› Issue (6): 734 -747.

上一篇    

风沙地貌形态动力学研究进展
张正偲( ), 董治宝   
  1. 中国科学院寒区旱区环境与工程研究所中国科学院沙漠与沙漠化重点实验室, 甘肃 兰州 730000
  • 出版日期:2014-06-10
  • 基金资助:
    国家自然科学基金项目“腾格里沙漠格状沙丘形成与演化过程”(编号:41101007);国家重点基础研究发展计划项目“青藏高原沙漠化对全球变化的响应”(编号:2013CB956000)资助

Research Progress on Aeolian Geomorphology and Morphodynamics

zhengcai Zhang( ), zhibao Dong   

  1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Online:2014-06-10 Published:2014-06-10

风沙地貌是广泛分布于干旱、半干旱,甚至部分湿润地区,由风力作用形成的一种地貌类型。风沙地貌学是研究在风力作用下物质运动形成的地表形态特征、空间组合规律及其形成演变的科学,是地貌学中以风为外营力形成的地貌为对象的分支学科。风是风沙地貌学研究的基础,其贯穿整个风沙地貌学研究。风况决定了风沙地貌的形态特征、空间组合特征和演化过程,同时,沙丘表面气流和风沙流控制沙丘的形态演化过程和移动过程。风沙地貌经过100多年的发展,在沙丘形态特征、动力学过程等方面取得了长足发展。从风沙地貌观测方法、分析方法和形态动力学角度出发,总结了近年来风沙地貌形态、形成风况以及动力学方面的研究进展。随着新技术的发展,全站仪、三维地形扫描仪等新的形态观测设备开始应用于风沙地貌形态测量,使得大范围风沙地貌形态精准测量成为可能,为风沙地貌形态动力学研究提供精确的地形特征资料。同时,三维超声风速仪等高频风速观测仪器也广泛应用于风沙地貌动力学观测,从而探讨风沙地貌形态—近地层气流的互馈机制。但是,针对具体的分析方法,如风况与沙丘形态的对应关系,近地层气流的分析方法以及形态—气流互馈关系等方面,目前还没有好的解决办法。

Aeolian geomorphology is formed by wind power in arid, semi-arid, and even humid regions. It is the study of the characteristics of land surface patterns, spatial combinations, formation, and development. Wind regime controls aeolian geomorphology patterns, spatial combinations, and development. Near surface air flow and aeolian flow control the development and movement of dunes. Recently, the field has developed rapidly. This paper summarized recent progress in aeolian geomorphology patterns, wind regime, and dune morphodynamics based on aeolian geomorphology observation methods, analysis method and morphodynamics. The new terrain observation techniques, such as Total Station and three dimensional terrain scanner, provided accuracy terrain data for morphodynamics study. Meanwhile, three dimensional sonic sensor measured high frequency field wind velocity data, which gave more information on the relationship between terrain and near surface air flow. However, the analysis method, such as the relationship between wind regime and dune types, high frequency wind velocity data and reciprocal relationship between dune pattern and near surface air flow, is still not solved.

中图分类号: 

图1 沙丘形态与风况的关系 (a)沙丘形态类型与风向和沙源供应量之间的关系[ 89 ];(b) 沙丘形态类型与风向和沙源供应量之间关系的概念模型[ 85 ]
Fig.1 Relationships between dune patterns and wind regime (a) The relationship between dune types and wind direction variability, equivalent sand thickness[ 89 ]; (b) The relationship dune type and wind direction variability, sand supple[ 85 ]
表1 3种常用区域风况分析方法对比
Table 1 The comparison of three general used regional wind regime analysis methods
图2 沙丘形态与风况的关系 (a)沙丘形态类型与合成输沙方向之间的关系[ 88 ];(b)双风向时沙丘走向与2个输沙方向之间的关系[ 74 ];(c)沙丘形态类型与2个输沙方向、大小之间的关系[ 90 , 91 , 93 ]
Fig.2 Relationship between dune patterns and wind rgime (a) The relationship between dune types and resultant sand transport direction[ 88 ]; (b)The relationship between dune crest direction and two sand transport direction for two wind direction[ 74 ];(c)The relationship between dune types and two sand transport direction, and two sand transport ratio[ 90 , 91 , 93 ]
图 3 横向沙丘背风侧气流特征 (a)单个横向沙丘背风侧气流分区概念模型[ 9 ];(b)PIV测得的典型横向沙丘背风侧气流结构[ 40 ]。H为沙丘高度;l为气流恢复距离;h为反向涡高度;L为沙丘背风坡投影长度;R为气流恢复点;α为背风坡角度;β为迎风坡角度
Fig.3 Characteristics of transverse leeward flow (a)Characteristics of transverse leeward flow a the conceptual model of the air flow characteristic at dune leeside of a single dune[ 9 ]; (b)The PIV measured air flow structure at the dune leeside of a single dune[ 40 ];H. Dune height; l. Airflow restoration distance; h. Reverse vortex; L. Leeward projected length; R. Airflow restoration spot; α. Leeward slope angle; β. Windward slope angle
图4 影响连续分布横向沙丘气流因子分析 L为风程长度;l为重附距离;l0为迎风坡投影长度;α为气流与主风向夹角;α0为迎风坡坡脚
Fig.4 The analysis on the factors affect on continuous distributed transverse dune L. wind fetch; l, reattachment distance; l0. windward projection length; α. angles between primary wind direction and airflow; α0, angle of windward slope
图5 气流方向与雷诺应力的关系
Fig.5 The relationship between air flow direction and Reynold Stress
图6 地形对气流的影响 (a)不同角度气流背风坡气流特征概念模型[ 107 ];(b)气流方向与脊线斜交时背风坡气流特征[ 106 ]; (c)气流方向与垂直脊线时背风坡气流特征[ 106 ]
Fig.6 The effect of geomorphology on airflow (a) the conceptual model of leeside air flow characteristics for different flow angles[ 107 ]; (b) Leeside air flow characteristics for perpendicular air flow[ 106 ]; (c)Leeside air flow characteristics for oblique air flow[ 106 ]
[1] Greeley R,Versen J I I. Wind as A Geological Process[M]. Cambridge:Cambridge University Press, 1985.
[2] Lancaster N. Dune morphology and dynamics[M]∥Abrahams A D, Parsons A J,eds. Geomorphology of Desert Environments. London:Chapman and Hall, 1994.
[3] Wilkins D E, Ford R L. Nearest neighbor methods applied to dune field organization: The Coral Pink Sand Dunes, Kane County, Utah, USA[J]. Geomorphology,2007,83:48-57.
[4] Derickson D, Kocurek G, Ewing R C, et al. Origin of a complex and spatially diverse dune-field pattern, Algodones, southeastern California[J]. Geomorphology,2008,99:186-204.
[5] Ewing R C, Kocurek G. Aeolian dune-field pattern boundary conditions[J]. Geomorphology,2010,114(3):175-187.
[6] Fryberger G. Dune forms and wind regime[M]∥McKee E D, ed. A Study of Global Sand Seas. U.S. Geological Survey. US Washington: Geological Survey and United States National Aeronautics and Space Administration, 1979.
[7] Sweet M L, Kocurek G. An empirical model of Aeolian dune lee-face air flow[J]. Sedimentology,1990,37:1023-1038.
[8] Frank A, Kocurek G. Airflow up the stoss slope of sand dunes: Limitations of current understanding[J]. Geomorphology,1996,17:47-54.
[9] Walker I J, Nickling W G. Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes[J]. Progress in Physical Geography, 2002, 26:47-75.
[10] Walker I J, Nickling W G. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel[J]. Earth Surface Processes and Landforms,2003,28:1111-1124.
[11] Lynch K, Jackson D W T, Cooper J A G. Coastal foredune topography as a control on secondary airflow regimes under offshore winds[J]. Earth Surface Processes and Landforms,2010,35(3):344-353.
[12] Bauer B O, Davidson-Arnott R G D, Walker I J, et al. Wind direction and complex sediment transport response across a beach-dune system[J]. Earth Surface Processes and Landforms,2012,37:1661-1677.
[13] Dong Z B, Qian G Q, Luo W Y, et al. A wind tunnel simulation of the effects of stoss slope on the lee airflow pattern over a two dimensional transverse dune[J]. Journal of Geophysical Research,2007,112: F03019, doi: 10.1029/2006JF000686.
[14] Dong Z B, Qian G Q, Lu P, et al. Turbulence fields in the lee of transverse dunes simulated in a wind tunnel[J]. Earth Surface Processes and Landforms,2009,34:204-216.
[15] Dong Z B, Wang H T, Qian G Q, et al. Wind shear with a blowing-sand boundary layer[J]. Geophysical Research Letters,2006,33: L22804, doi: 10.1029/2006GL026739.
[16] Ha Si, Wang Guiyong, Dong Guangrong. Lee-face airflow, depositional types and its significance[J]. Acta Sedimentologica Sinica, 2001,19(1):96-100.
[哈斯,王贵勇,董光荣.沙丘背风侧气流及其沉积类型与意义[J].沉积学报,2001,19(1):96-100.]
[17] Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Wind tunnel simulation on flow reattachment on lee of transverse dunes[J]. Journal of Desert Research, 2008, 28(1):16-20.
[钱广强,董治宝,罗万银,等.横向沙丘背风侧气流重附风洞模拟[J].中国沙漠, 2008, 28(1):16-20.]
[18] Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Airflow patterns upwind of obstacles and their significance for echo dune formation[J]. Science in China (Series D), 2012,42(1):34-41.
[钱广强, 董治宝, 罗万银, 等.不同坡度障碍物前气流场特征及其对回涡沙丘形成的影响[J]. 中国科学: D辑,2012,42(1):34-41.]
[19] Liu Qian, Gao Chenjing, Zhao Yuanjie, et al. Positive ion contained in Tamarix Cone sedimentary veins and climatic and environmental change in southern region of Taklimakan Desert[J]. Advances in Earth Science, 2013, 28(12):1326-1334.
[刘倩, 高辰晶, 赵元杰,等. 塔克拉玛干沙漠南缘红柳沙包落叶阳离子含量及气候环境变化[J]. 地球科学进展,2013,28(12): 1326-1334.]
[20] Liu Bing, Jin Heling, Sun Zhong, et al. Geochemical characteristics of aeolian deposits in Gonghe Basin, Northeastern Qinghai-Tibetan Plateau and the indicating climatic changes[J]. Advances in Earth Science, 2012, 27(7):788-799.
[刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部共和盆地风成沉积地球[J]. 地球科学进展, 2012, 27(7): 788-799.]
[21] He Daliang. Problem on the formation mechanism of aeolian landform[J]. Journal of Desert Research, 1985,5(1):33-37.
[贺大良.风沙地貌形成机制的几个问题[J].中国沙漠,1985,5(1):33-37.]
[22] Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. London: Methuen,1941.
[23] Wu Zheng. Geomorphology of Wind-Drift Sands and Their Controlled Engineering[M]. Beijing: Science Press, 2003.
[吴正.风沙地貌与治沙工程学[M].北京:科学出版社, 2003.]
[24] Ewing R C, Bourke M, Kocurek G. Transport conditions and stages of dune development in the Olympia Undae dune field[C]∥40th Lunar and Planetary Science Conference. The Woodlands, Texas: Lunar and Planetary Science, 2009.
[25] Ewing R C, Kocurek G. Aeolian dune interactions and dune-field pattern formation: White sands dune field, New Mexico[J]. Sedimentology,2010,57:1199-1219.
[26] Ewing R C, Kocurek G, Lake L W. Pattern analysis of dune-field parameters[J]. Earth Surface Processes and Landforms,2006,31:1176-1191.
[27] Kocurek G, Ewing R C, Mohrig D. How do patterns arise? New views on the role of bedform interactions within a set of boundary conditions[J]. Earth Surface Processes and Landforms, 2010, 35:51-63.
[28] Hugenholtz C H, Levin N, Barchyn T E, et al. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook[J]. Earth-Science Reviews, 2012, 111:319-334.
[29] Zhang Deping, Wang Xiaoke, Hasieerdun, et al. HulunBuir sandy grassland blowouts: Geomorphology, classification, and significances[J]. Journal of Desert Research, 2006, 26(6):894-902.
[张德平,王效科,哈斯,等. 呼伦贝尔沙质草原风蚀坑研究(1)形态、分类、研究意义[J].中国沙漠,2006,26(6):894-902.]
[30] Ding Lian’gang, Yan Ping, Du Jianhui, et al. Monitoring the state of erosion and deposition in straw checkerboard barriers based on 3D laser scanning technique[J]. Science of Surveying and Mapping,2009,34(2):90-92.
[丁连刚,严平,杜建会,等.基于三维激光扫描技术的草方格沙障内蚀积形态监测[J].测绘科学,2009,34(2):90-92.]
[31] Du Huishi, Ha Si, Wu Xia, et al. Application of 3S technology in morphological character research of parabolic dune[J]. Geography and Geo-information Science, 2011,27(5):33-36.
[杜会石,哈斯,吴霞, 等.3S技术在抛物线沙丘形态特征研究中的应用[J]. 地理与地理信息科学,2011,27(5):33-36.]
[32] Du Huishi, Ha Si. Morphological monitoring and dynamic simulation of dunes[J]. Journal of Beijing Normal University (Natural Science),2013,49(4):400-406.
[杜会石,哈斯.沙丘地貌形态监测与模拟研究进展[J]. 北京师范大学学:自然科学版, 2013, 49(4):400-406.]
[33] Lü P, Narteau C, Dong Z B, et al. Emergence of oblique dunes in a landscape-scale experiment[J]. Nature Geoscience, 2014, 7: 99-103.
[34] Dong Z B, Zhang Z C, Lü P. Analysis of the wind regime in context of dune geomorphology for the Kumtagh Desert, Northwest China[J]. Zeitschrift für Geomorphologie,2012,56(4):459-475.
[35] Dong Z B, Zhang Z C, Qian G Q, et al. Geomorphology of star dunes in the southern Kumtagh Desert, China: Control factors and formation[J]. Environmental Earth Science, 2013,69:267-277.
[36] Zhang Zhengcai, Dong Zhibao, Qian Guangqiang, et al. Wind energy environments and aeolian geomorphology in the western and south-western Tengger Desert[J]. Journal of Desert Research, 2012,32(6):1528-1533.
[张正偲,董治宝,钱广强,等. 腾格里沙漠西部和西南部风能环境与风沙地貌[J].中国沙漠,2012,32(6):1528-1533.]
[37] Zhang Zhengcai, Dong Zhibao. Dune field patterns and wind environments in the middle reaches of the Heihe Basin[J]. Journal of Desert Research, 2014,34(2): 332-341.
[张正偲,董治宝.黑河流域中游沙漠风能环境与风沙地貌[J].中国沙漠,2014,34(2):332-341.]
[38] Zhang Zhengcai, Dong Zhibao, Zhao Aiguo. Characteristics of blown sand activity in the Kumtagh Desert[J]. Arid Land Geography, 2010,33(6):1-9.
[张正偲,董治宝,赵爱国,等.库姆塔格沙漠风沙活动特征[J].干旱区地理,2010,33(6):1-9.]
[39] Li Jiyan, Dong Zhibao, Li Enju, et al. Wind regime of Yardang landform regions in the Qarhan Salt Lake[J]. Journal of Desert Research, 2013,33(5):1293-1298.
[李继彦,董治宝,李恩菊,等.察尔汗盐湖雅丹地貌区风况分析[J].中国沙漠,2013,33(5):1293-1298.]
[40] Dong Zhibao,Su Zhizhu,Qian Guangqiang,et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011.
[董治宝,苏志珠,钱广强,等. 库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011.]
[41] Dong Yuxiang, Hesp P A, Namikas S L, et al. Coastal transverse ridge in China[J]. Scientia Geographica Sinica, 2008, 28(4):507-512.
[董玉祥, Hesp P A, Namikas S L,等.海岸横向沙脊表面风沙流结构的野外观测研究[J].地理科学, 2008, 28(4):507-512.]
[42] Ha Si, Dong Guangrong, Wang Guiyong. Morphodynamic study of reticulate dunes at southeastern fringe of the Tengger Desert[J]. Science in China (Series D), 1999, 29(5): 466-471.
[哈斯,董光荣,王贵勇.腾格里沙漠东南缘格状沙丘的形态—动力学研究[J].中国科学:D辑,1999,29(5):466-471.]
[43] Ha Si. The primary research on the difference of aeolian transport at the Tengger Desert[J]. Chinese Science Bulletin,2004,49(11):1099-1104.
[哈斯.腾格里沙漠东南缘沙丘表面风沙流结构变异的初步研究[J].科学通报,2004,49(11):1099-1104.]
[44] Wang Xunming, Dong Zhibao, Zhao Aiguo. Airflow and particle- size distributions and their significance on the dynamic process of a simple transverse dune[J]. Journal of Arid Land Resources and Environment,2004,18(4):29-33.
[王训明,董治宝,赵爱国.简单横向沙丘表面物质组成、气流分布及其在动力学过程中的意义[J].干旱区资源与环境,2004,18(4):29-33.]
[45] Wang Xunming, Dong Zhibao, Qu Jianjun, et al. Studies on the morphodynamic processes of simple linear dunes in Taklimakan Desert[J]. Journal of Desert Research, 2003,2(3):257-262.
[王训明, 董治宝, 屈建军,等.塔克拉玛干沙漠简单线形沙丘形态动力学过程研究[J].中国沙漠,2003,2(3):257-262.]
[46] Han Zhiwen, Dong Zhibao, Wang Tao, et al. Observations of several characteristics of aeolian sand movement in the Taklimakan Desert[J]. Science in China (Series D),2003,33(3):255-263.
[韩致文,董治宝,王涛, 等. 塔克拉玛干沙漠风沙运动若干特征观测研究[J].中国科学: D辑,2003,33(3):255-263.]
[47] Han Zhiwen, Gou Qianqian, Du Heqiang, et al. The piecewise fitting of sand flux vertical distribution of wind-sand flow within 100-cm height above the barchan dune surface[J]. Scientia Geographica Sinica,2012,32(7):892-897.
[韩致文,缑倩倩,杜鹤强,等. 新月形沙丘表面100cm高度内风沙流输沙量垂直分布函数分段拟合[J]. 地理科学, 2012, 32(7):892-897.]
[48] Qian G Q, Dong Z B, Luo W Y, et al. Airflow patterns upwind of obstacles and their significance for echo dune formation: A field measurement of the effects of the windward slope angle[J]. Science in China(Series D), 2012,55:545-553.
[49] Walker I J. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research[J]. Geomorphology, 2005, 68(1/2):57-76.
[50] Roy A G, Biron P, De Serres B. On the necessity of applying a rotation to instantaneous velocity measurements in river flows[J]. Earth Surface Processes and Landforms,1996,21(9):817-827.
[51] van Boxel J H, Sterk G, Arens S M. Sonic anemometers in aeolian sediment transport research[J]. Geomorphology,2004,59(1/4):131-147.
[52] Scott Van Pelt R, Peters P, Visser S. Laboratory wind tunnel testing of three commonly used saltation impact sensors[J]. Aeolian Research, 2009,1:55-62.
[53] Barchyn T E, Hugenholtz C H. Field comparison of four piezoelectric sensors for detecting aeolian sediment transport[J]. Geomorphology,2010,120:368-371.
[54] Dong Z B, Sun H Y, Zhao A G. WITSEG sampler: A segmented sand sampler for wind tunnel test[J]. Geomorpholoy, 2004,59(1/4): 119-129.
[55] Dong Z B, Lü P, Zhang Z C, et al. Aeolian transport in the field: A comparison of different surface treatments[J]. Journal of Geophysical Research: Atmospheres,2012,117:D09210, doi: 10.1029/2012JD017538.
[56] Zhang Zhengcai, Dong Zhibao, Zhao Aiguo. Observations of Gobi aeolian transport and wind fetch effect[J]. Science in China (Series D),2011,41(10):1505-1510.
[张正偲, 董治宝, 赵爱国.人工模拟戈壁风沙流与风程效应观测[J].中国科学:D 辑, 2011,41(10):1505-1510.]
[57] Goossens D, Offer Z Y. Wind tunnel and field calibration of six aeolian dust samplers[J]. Atmospheric Environment, 2010, 34:1043-1057.
[58] Goossens D, Offer Z, London G. Wind tunnel and field calibration of five aeolian sand traps[J]. Geomorphology,2010,35:233-252.
[59] Mendez M J, Funk R, Buschiazzo D E. Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers[J]. Geomorphology,2011,129:43-48.
[60] Fryrear S G, Schenk C. Wind sedimentation tunnel experiments on the origins of aeolian strata[J]. Sedimentology,1986,28:805-821.
[61] Li Zhizhong, Guan Youzhi. Experimental study on imitative flow pattern of longitudinal dunes and transverse dunes[J]. Journal of Desert Research, 1996,16(4):360-363.
[李志中,关有志.纵向沙丘和横向沙丘模拟流场的实验研究[J].中国沙漠, 1996,16(4):360-363.]
[62] Howard A D, Morton J B, Gad-El-Hak P, et al. Sand transport model of barchan dune equilibrium[J]. Sedimentology,1978,25:307-338.
[63] Howard A D, Walmsley J L. Simulation model of isolated dune sculpture by wind[C]∥Barndorff-Nielsen, ed. Proceedings of the International Workshop on the Physics of Blown Sand. Aarhus: University of Aarhus,1985.
[64] Werner B T. Eolian dunes: Computer simulations and attractor interpretation[J]. Geology,1995,23:1107-1110.
[65] Jackson P S, Hunt J C R. Turbulent wind flow over a low hill[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101:929-955.
[66] Liu Benli, Zhang Weimin, Peng Fei, et al. Numerical simulation of airflow field over a pyramid dune[J]. Journal of Desert Research, 2011,31(2):386-392.
[柳本立,张伟民,彭飞, 等.金字塔沙丘流场的三维数值模拟[J].中国沙漠,2011,31(2):386-392.]
[67] Narteau C, Zhang D, Rozier O. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bedforms[J]. Journal of Geophysical Research, 2009,114: F03006, doi: 10.1029/2008JF001127.
[68] Zhang D, Narteau C, Rozier O. Morphodynamics of barchan and transverse dunes using a cellular automaton model[J]. Journal of Geophysical Research, 2010,115: F03041, doi: 10.1029/2009JF001620.
[69] Zhang D, Narteau C, Rozier O, et al. Morphology and dynamics of star dunes from numerical modelling[J]. Nature Geoscience, 2012,5:463-467.
[70] Nield J M, Andreas C W B. Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach[J]. Earth Surface Processes and Landforms,2008, 33(5):724-740.
[71] Zheng X J, Bo T L, Zhu W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10:387-395.
[72] Bo T L, Zheng X J. The formation and evolution of aeolian dune fields under unidirectional wind[J]. Geomorphology, 2011, 134:408-416.
[73] Bo T L, Zheng X J. A new expression describing the migration of aeolian dunes[J]. Catena,2014,118:1-8.
[74] Rubin D M, Hunter R E. Bedform alignment in directionally varying flow[J]. Science,1987,237:276-278.
[75] Werner B T, Kocurek G. Bedform spacing from defect dynamics[J].Geology,1999,27:727-730.
[76] Rubin D M. A unifying model for planform straightness of ripples and dunes in air and water[J]. Earth-Science Reviews,2012, 113:176-185.
[77] Ling Yuquan. Engineering calculation of maximum possible sand-transporting quantity[J]. Journal of Desert Research, 1997,17(4):362-368.
[凌裕泉.最大可能输沙量的工程计算[J].中国沙漠,1997,17(4):362-368.]
[78] Lee Z S, Baas A C W. Streamline correction for the analysis of boundary layer turbulence[J]. Geomorphology, 2012,171/172:69-82.
[79] Melton F A. A tentative classification of sand dunes: Its application to dune history in the southern High Plains[J]. Journal of Geology, 1940,48:113-174.
[80] Fedorovich B A. The relief of Asian sands as a reflection of atmospheric circulation processes[J].Problemy Fizicheskoi Geografi, 1948,6(13):92-109.
[81] McKee E D. Introduction to a study of global sand seas[M]∥McKee E D, ed. A Study of Global Sand Seas. Virginia: USGS Professional Paper,1979.
[82] Wu Zheng. Aeolian Geomorphology[M]. Beijing: Science Press, 1987.
[吴正.风沙地貌学[M].北京:科学出版社,1987.]
[83] Cooke R U,Warren A,Goudie A S. Desert Geomorphology[M]. London: UCL Press,1993.
[84] Lancaster N. Geomorphology of Desert Dunes[M]. London: Routledge, 1995.
[85] Livingstone I, Warren A. Aeolian Geomorphology, An Introduction[M]. Essex: Longman, 1996.
[86] Thomas D S G. Sand seas and aeolian bedforms[M]∥Thomas D S G, ed. Arid Zone Geomorphology. London: Belhaven Press,1997.
[87] Dong Z B, Wei Z H, Qian G Q, et al. “Raked” linear dunes in the Kumtagh Desert, China[J]. Geomorphology,2010,123:122-128.
[88] Hunter R E, Richmond B M, Alpha T R. Storm-controlled oblique dunes of the Oregon Coast[J]. Geological Society of America Bulletin,1983,97:1450-1465.
[89] Wasson R J, Hyde R. Factors determining desert dune type[J]. Nature, 1983,304:337-339.
[90] Fenton L K, Michaels T I, Beyer R A. Inverse maximum gross bedform-normal transport 1: How to determine a dune-constructing wind regime using only imagery[J]. Icarus, 2014, 230:5-14.
[91] Rubin D M, Ikeda H. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows[J]. Sedimentology,1990,37:673-684.
[92] Werner B T, Kocurek G. Bed-form dynamics: Does the tail wag the dog?[J].Geology,1997,25(9):771-774.
[93] Kocurek G, Ewing R C, Aeolian dune field self-organization-Implications for the formation of simple versus complex dune-field patterns[J]. Geomorphology,2005,72:94-105.
[94] Parteli E J R, Durán O, Tsoar H, et al. Dune formation under bimodal winds[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106: 22085-22089.
[95] Reffet E, Courrech du Pont S, Hersen P, et al. Formation and stability of transverse and longitudinal sand dunes[J]. Geology,2010, 38:491-494.
[96] Parsons D R, Wiggs G F S, Walker I J. Numerical modeling of airflow structures over idealized transverse Aeolian dunes of varying geometry[J]. Geomorpholgy, 2004,59:149-164.
[97] Schatz V, Herrmann H J. Flow separation in the lee side of transverse dunes: A numerical investigation[J]. Geomorphology, 2006,81:207-216.
[98] McLean S R, Smith J D. A mode1 for flow over two-dimensional bed forms[J]. Journal of Hydraulic Engineering, 1986,112: 300-317.
[99] Lancaster N. The dynamics of star dunes: An example from the Gran Desierto, Mexico[J]. Sedimentology, 1989,36: 273-289.
[100] Weaver C M, Wiggs G F S. Field measurements of mean and turbulent airflow over a barchan sand dune[J]. Geomorphology, 2011,128(1/2):32-41.
[101] Sterk G, Jacobs A F G, van Box J H. The effect of turbulent flow structures on salvation sand transport in the atmospheric boundary layer[J]. Earth Surface Processes and Landforms,1998,23:877-887.
[102] Wiggs G F S, Weaver C M. Turbulent flow structures and aeolian sediment transport over a barchan sand dune[J]. Geophysical Research Letters, 2012,39: L05404, doi: 10.1029/2012GL050847.
[103] Chapman C A, Walker I J, Hesp P A, et al. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune[J]. Geomorphology, 2012,151/152:1-12.
[104] Mei Fanmin. A concept model of dynamic evolution of aeolian sand particles entrainment in terms of turbulence structure[J]. Journal of Desert Research,2011,31(2):379-385.
[梅凡民.基于湍流结构的风沙颗粒起动动态演化的概念模式[J].中国沙漠,2011,31(2):379-385.]
[105] Best J L. On the interactions between turbulent flow structure, sediment transport and bedform development: Some considerations from recent experimental research[M]∥Clifford N J, French J R, Hardisty J, eds. Turbulence: Perspectives on Flow and Sediment Transport. Chichester: John Wiley & Sons, 1993.
[106] Jackson D W T, Beyers M, Delgado-Fernandez I, et al. Airflow reversal and alternating corkscrew vortices in foredune wake zones during perpendicular and oblique offshore winds[J]. Geomorphology,2013,187:86-93.
[107] Walker I J, Shugar D H. Secondary flow deflection in the lee of transverse dunes with implications for dune morphodynamics and migration[J]. Earth Surface Processes and Landforms,2013,38(14):1642-1654.
[1] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[2] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[6] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[7] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[8] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[9] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[10] 王跃. 风沙地貌学研究与展望[J]. 地球科学进展, 1994, 9(6): 37-40.
[11] 邹学勇;董光荣. 风沙物理学的发展与展望[J]. 地球科学进展, 1993, 8(6): 44-49.
阅读次数
全文


摘要