地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 83 -89. doi: 10.11867/j.issn.1001-8166.2017.01.0083

上一篇    下一篇

不同外形粗糙元覆盖沙床面抗风蚀效益的风洞模拟实验
樊瑞静 1, 2( ), 李生宇 1,,A; *( ), 周杰 1, 2, 王海峰 1   
  1. 1.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-11-27 修回日期:2016-12-27 出版日期:2017-01-20
  • 通讯作者: 李生宇 E-mail:frj66xmn@163.com;lishy_hb@163.com
  • 基金资助:
    *国家自然科学基金面上项目“塔克拉玛干沙漠腹地垄间平地沙粒胶结体对沙面蚀积过程的影响及作用机制”(编号:41571011)资助.

Wind Tunnel Experiment of Anti-erosion Efficiency on the Sand Beds Coverd by Different Shapes of Roughness-Elementes

Ruijing Fan 1, 2( ), Shengyu Li 1, *( ), Jie Zhou 1, 2, Haifeng Wang 1   

  1. 1.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-27 Revised:2016-12-27 Online:2017-01-20 Published:2017-01-10
  • Contact: Shengyu Li E-mail:frj66xmn@163.com;lishy_hb@163.com
  • About author:

    First author:Fan Ruijing(1990-),female,Anyang City, He’nan Province,Master student. Research areas include sandy landform and desertification control.E-mail:frj66xmn@163.com

    *Corresponding author:Li Shengyu(1975-),male, Xuanhua City, Hebei Province, Associate Professor. Research areas include sandy landform and desertification control.E-mail:lishy_hb@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Impact and mechanism of the hinterland of Taklimakan Desert sand bodies on sand erosion process”(No.41571011).

为了探明沙面粗糙元覆盖物的几何外形对地表风沙活动的抑制作用关系,用球形、三棱锥形、圆柱形、正方体形、饼形和半球形6种外形的粗糙元(自制,保持单颗粒等质量)覆盖(盖度10%)流沙面,分别在净风和挟沙风条件下进行风洞模拟实验。结果表明:①净风条件下,球形、三棱锥形、圆柱形和正方体形粗糙元覆盖床面的风蚀量明显小于饼形和半球形覆盖床面,正方体形、圆柱形、三棱锥形和球形的抗风蚀效率也较饼形和半球形好;②挟沙风条件下,随着风速的增加,球形、三棱锥形、圆柱形覆盖沙面由风积向风蚀转化,风蚀量随风速增大而增大,当风速大于10 m/s,床面均表现为强烈侵蚀,其中饼形和半球形阻沙功能较弱,两者风蚀率最大;③无论是净风,还是挟沙风条件,床面风蚀量均受粗糙元的方向比率、高度和间距等因素的影响,相同覆盖度下,细高、有明显边界的粗糙元防护效果好于粗矮的粗糙元。

In order to study the relationship between the shapes of roughness-elements on sand beds and the surface sand activity inhibition, we chose six shapes of elements including spherical, triangular pyramid shape, cylindrical, square shape, pie and hemispherical shape by hand with equal quality kept. We carried out the experiment with the 10% coverage on the wind tunnel. The results revealed that ① the erosion and anti-erosion rate of spherical, triangular pyramid shape, cylindrical and square roughness-elements were better than the pie and hemispherical on the non-sand wind; ② On the sand-driving wind conditions, spherical, triangular, cylindrical covered beds became erosion to erosion-deposition with the increase of wind speed, and the erosion rate was increased with the wind speed. When the wind speed was more than 10 m/s, the sand-beds showed a strong erosion, and the pie and hemispherical elements’ resistance function were weakest; ③ No matter the non-sand wind or sand wind, the erosion rate was affected by the elements’ aspect ratio, height and spacing. The slender elements with a prominent upper edge were clearly superior to broad rounded elements.

中图分类号: 

表1 不同外形粗糙元几何参数特征
Table 1 The parameters of roughness-elements with different shapes
图1 净风8 m/s时不同外形粗糙元覆盖沙盘吹蚀前后变化
Fig.1 Changes of sand plates covered with different shapes roughness-elements after wind erosion at wind speed of 8 m/s
图2 净风条件下不同外形大颗粒覆盖物风蚀率(a)和抗风蚀率(b)
Fig.2 The wind erosion rate and anti-wind erosion of different shapes roughness-elements under non-sand driving wind
图3 挟沙风条件下不同外形粗糙元覆盖物的风蚀率(a)和抗风蚀率(b)
Fig.3 The wind erosion rate and anti-wind erosion rate of different shapes roughness-elements under sand driving wind
表2 同一床面条件下风蚀率( y)与风速( x)的拟合关系
Table 2 Fitting relationships between erosion rate( y) and wind speed( x) on the same sand beds
图4 抗风蚀效率与粗糙元方向比率的关系
Fig.4 The relationship of anti-wind erosion rate and aspect ratio
[1] Zou Xueyong,Zhang Chunlai,Cheng Hong,et al.Classification and representation of fctors affectiong soil wind erosion in a model[J].Advances in Earth Science,2014,29(8):875-889.
[邹学勇,张春来,程宏,等.土壤风蚀模型中的影响因子分类与表达[J].地球科学进展, 2014, 29(8):875-889.]
[2] Wang Xunming,Lang Lili,Hua Ting,et al. Gravelcover of gobi desert and its significance for wind erosion[J].Journal of Desert Research,2013,33(2):313-319.
[王训明,郎丽丽,花婷,等.戈壁砾石覆盖度与风蚀强度关系实验研究[J].中国沙漠,2013,33(2):313-319.]
[3] Zhang Kecun,Zhang Weimin,Qu Jianjun,et al.Study on dynamic properities of gobi surface with different gravel coverage[J].Arid Zone Research,2012,29(6):1 077-1 082.
[张克存,张伟民,屈建军,等.不同砾石盖度戈壁床面动力学特征研究[J].干旱区研究,2012,29(6):1 077-1 082.]
[4] Zhang Weimin,Tan Lihai,Zhang Kecun,et al. Field wind tunnel simulation of the process of aeolian erosion and deposition of gravel beds with different coverage[J].Scientia Geographica Sinica, 2012,32(11):1 370-1 376.
[张伟民,谭立海,张克存,等.不同砾石覆盖度床面蚀积过程的野外风洞实验研究[J].地理科学,2012,32(11):1 370-1 376.]
[5] Liu Lianyou,Liu Yuzhang.Effect ofgravel mulch restraining soil deflation by wind tunnel simulation[J]. Journal of Desert Research, 1999,19(1):60-62.
[刘连友,刘玉璋.砾石覆盖对土壤吹蚀的抑制效应[J].中国沙漠,1999,19(1):60-62.]
[6] Zhang W,Wang T,Wang W, et al. The gobi sand stream and its control over the top surface of the Mogao Grottoes,China[J]. Bulletin of Engineering Geology & the Environment,2004,63(3):261-269.
[7] Dong Zhibao,Qu Jianjun,Liu Xiaoping,et al.The research of resistance coefficience on gobi surface[J].Science in China(Series D),2001,31(11):953-958.
[董治宝,屈建军,刘小平,等.戈壁表面阻力系数的实验研究[J].中国科学:D辑,2001,31(11):953-958.]
[8] Lettau H.Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description[J]. Journal of Applied Meteorlogy,1969,8(5):828-832.
[9] Wooding R A,Bradley E F,Marshall J K.Drag due to regular arrays of roughness elements of varying geometry[J]. Boundary-Layer Meteorology,1973,5(3):285-308.
[10] Gillette D A,Stockton P H.The effect of nonerodible particles on wind erosion of erodible surfaces[J]. Journal of Geophysical Research Atmospheres,1989,94(D10):12 885-12 893.
[11] Raupach M R,Gillette D A,Leys J F.The effect of roughness elements on wind erosion threshold[J]. Journal of Geophysical Research Atmospheres,1993,98(D2):3 023-3 029.
[12] Mei Fanmin,Jiang Shanshan,Wang Tao.The inflected feature of wind profiles over several roughness beds and its implications[J]. Journal of Desert Research, 2010,30(2):217-227.
[梅凡民,江姗姗,王涛.粗糙床面风廓线的转折特征及其物理意义[J].中国沙漠,2010,30(2):217-227.]
[13] Mei Fanmin,Jiang Chanwen,Jiang Shanshan,et al.The integrated effects of roughness elements’geometric parameters on aerodynamic roughnes length[J]. Journal of Desert Research,2012,2(6):1 534-1 541.
[梅凡民,蒋缠文,江姗姗,等.粗糙元几何参数的交互作用对床面空气动力学粗糙度的影响[J].中国沙漠,2012,2(6):1 534-1 541.]
[14] Wang Xiao,Zhang Weimin.A numerical simulation of effect of windflow and gravels’geometric parmeters on aerodynamic roghness length[J]. Journal of Desert Research,2014,34(4):943-948.
[王晓,张伟民.数值模拟气流特征和砾石几何参数对床面空气动力学粗糙度的影响[J].中国沙漠,2014,34(4):943-948.]
[15] Marusic I, Mckeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[J]. Physics of Fluids, 2010, 22(6):843-848.
[16] Smits A J, Mckeon B J, Marusic I.High-reynolds number wall turbulence[J]. Fluid Mechanics, 2011, 43(43):353-375.
[17] Wang Ping,Zheng Xiaojing.Development of unsteady windblown sand transport[J].Advances in Earth Science, 2014, 29(7):786-794.
[王萍,郑晓静.非平稳风沙运动研究进展[J].地球科学进展, 2014, 29(7):786-794.]
[18] Qu Jianjun,Wang Tao,Dong Zhibao,et al.The reviewed of dust storm wind tunnel tests[J].Journal of Arid Land Resources and Enviroment,2004, (Suppl.1):109-115.
[屈建军,王涛,董治宝,等.沙尘暴风洞模拟实验的综述[J].干旱区资源与环境,2004, (增刊1):109-115.]
[19] Xue Xian,Zhang Weimin,Wang Tao,et al.Wind tunnel experiments on the effects of gravel protection and problems of field surveys[J].Acta Geographica Sinica, 2000,55(3):375-383.
[薛娴,张伟民,王涛.壁砾石防护效应的风洞实验与野外观测结果——以敦煌莫高窟顶戈壁的风蚀防护为例[J].地理学报,2000,55(3):375-383.]
[20] Marshall J K.Drag measurements in roughness arrays of varying density and distribution[J]. Agricultural Meteorology,1971,8(71):269-292.
[21] Zhou Zhe.Investigation of the Particle Transport in Developing Flat-Plate Boundary Layers with A Hemispherical Roughness Element by Direct Numerical Simulation[D].Hangzhou:Zhejiang University,2010.
[周哲. 存在半球粗糙元的发展平板边界层流动中的颗粒输运的直接数值模拟研究[D].杭州:浙江大学, 2010.]
[22] Raupach M R,Thom A S, Edwards I.A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces[J]. Boundary-Layer Meteorology,1980,18(4):373-397.
[23] Tan Lihai,Zhang Weimin,An Zhishan,et al.Response of wind velocity gradient at boundray layer to gravel coveage[J]. Journal of Desert Research, 2012,32(6):1 522-1 527.
[谭立海,张伟民,安志山,等.砾石覆盖对边界层风速梯度的影响[J].中国沙漠,2012,32(6):1 522-1 527.]
[24] Ash J E,Wasson R J.Vegetation and mobility in the Australian desert dunefield[J]. Zeitschrift Für Geomorphologie, 1983,45:7-25.
[25] Bachavov A P.A description of devices of wind erosion[J]. World Desert Research,1992,3:40-43.
[1] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[2] 张绍云,董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展, 2019, 34(10): 1028-1037.
[3] 董玉祥,张青年,黄德全. 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
[4] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[5] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[6] 岳高伟,贾慧娜. 沙尘暴过程中颗粒对化学结皮的冲蚀破坏[J]. 地球科学进展, 2012, 27(7): 800-805.
[7] 牛清河,屈建军,李孝泽,董光荣,张克存,韩庆杰. 雅丹地貌研究评述与展望[J]. 地球科学进展, 2011, 26(5): 516-527.
[8] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[9] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[10] 梅凡民,王涛,张小曳,陈敏. 有关粉尘释放模型的应力分配模式存在问题的讨论[J]. 地球科学进展, 2006, 21(4): 424-429.
[11] 陈渭南,董光荣,董治宝. 中国北方土壤风蚀问题研究的进展与趋势[J]. 地球科学进展, 1994, 9(5): 6-12.
阅读次数
全文


摘要