地球科学进展 ›› 2019, Vol. 34 ›› Issue (1): 57 -71. doi: 10.11867/j.issn.1001-8166.2019.01.0057

上一篇    下一篇

空间域密度界面反演方法及其进展
冯旭亮( )   
  1. 1. 西安石油大学地球科学与工程学院,陕西 西安 710065
  • 收稿日期:2018-08-31 修回日期:2018-12-03 出版日期:2019-01-10
  • 基金资助:
    陕西省教育厅科研计划项目“基于L0-范数约束的海沟型密度界面反演技术研究”(编号:17JK0617)

Review of Density Interface Inversion Method in Spatial Domain

Xuliang Feng( )   

  1. 1. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China
  • Received:2018-08-31 Revised:2018-12-03 Online:2019-01-10 Published:2019-03-05
  • About author:Feng Xuliang(1989-), male, Pingliang City, Gansu Province, Lecturer. Research areas include the gravity and magnetic exploration methods and the comprehensive geophysical exploration of petroleum and natural gas. E-mail: fxlchd@163.com
  • Supported by:
    Project supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department “Gravity inversion technique for estimating the depth to a trench type density interface based on L0-norm constraint”(No. 17JK0617)

利用重力数据反演密度界面一直是重力学研究的重要内容,其在区域构造研究和油气勘探等领域发挥着越来越重要的作用。按照计算域的不同,密度界面反演方法可分为频率域方法和空间域方法。简要介绍了空间域方法中研究和使用较多的直接迭代法、脊回归法和正则化方法的基本原理及改进措施,3种方法的应用效果对比表明,直接迭代法和脊回归法反演结果均为光滑形态的密度界面,而正则化方法可反演非光滑形态密度界面,并且方便施加先验约束信息。密度界面反演结果受位场分离精度的影响较大,应尽量利用已知信息作为约束进行位场分离或采用逐层分离技术。待反演界面上下的密度差对反演结果影响亦很大,需充分利用研究区密度资料构建符合构造特征的三维密度差变化模型以提高反演的精度。在反演方法原理方面,需要结合先验约束信息(可通过钻井、地震资料等获得)来提高反演的准确性。更重要的是,需明确反演密度界面与地质构造界面的对应关系,以正确评价反演结果。最后提出了密度界面反演方法将来的研究重点和发展方向:随着重力观测技术的快速发展以及研究目标的多样化,今后需研究适用于大区域或全球尺度的密度界面反演方法;随着地质目标勘探难度的增大,亦亟需研究符合构造特征的精细的单密度界面反演方法,并发展多层密度界面反演技术。

Inversion of density interfaces using gravity data has traditionally been an important part of gravity research, and plays an increasingly important role in areas such as regional tectonic research and oil and gas exploration.The density interface inversion methods can be divided into the frequency domain and spatial domain methods according to different computing domains. The frequency domain inversion methods have been considered in previous literature. This paper briefly introduced the rationale and the advance of the direct iterative method, the ridge regression method and the regularization method,which are most studied and used among the spatial domain methods. The performance of the three methods showed that the inversion results of the direct iteration method and the ridge regression method are both the smooth shape density interfaces, while the regularization method can estimate the density interfaces of non-smooth morphology, and is convenient to add prior constraint information. The inversion results of density interface are greatly determined by the precision of potential field separation. The prior information should be used as constraints for gravity field separation as far as possible or the layer-by-layer separation technique could be adopted. The density contrast of the density interface also has noticeable impact on the inversion result. It is necessary to make full use of the rock density data to build a three-dimensional density contrast variation model that conforms to the tectonic features to improve the inversion accuracy.In terms of the theory of inversion method, it is also necessary to combine prior constraint information (which can be obtained through drilling and seismic data, etc.) to improve the accuracy of inversion.More importantly, it is necessary to define the corresponding relationship between the inverted density interface and the geological structure interface in order to evaluate the inversion results correctly.Finally, this paper discussed the developing trend and study emphasis for density interface inversion.The inversion methods that are suitable for large regional or global scale need to be studied with the rapid development of gravity observation technology and the diversification of research objectives. With the increasing difficulty of geological target exploration, it is also urgent to study the optimal single-density interface inversion method conforming to the tectonic features and develop the multi-layer density interface inversion method.

中图分类号: 

1 Parker R L . The rapid calculation of potential anomalies[J].Geophysical Journal of the Royal Astronomical Society, 1972, 37(3): 447-455.
2 Oldenburg D W . The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39(4): 526-536.
3 Feng Juan , Meng Xiaohong , Chen Zhaoxi , et al . Review of the gravity density interface inversion[J]. Progress in Geophysics, 2014, 29(1): 223-228.
冯娟, 孟小红, 陈召曦, 等 . 重力密度界面反演方法研究进展[J].地球物理学进展, 2014, 29(1): 223-228.
4 Tsuboi C . Crustal structure in northern and middle California from gravity-pendulum data[J]. Geological Society of America Bulletin, 1956, 67(12): 1 641-1 646.
5 Wang Ping , Xia Kanyuan , Zhang Yixiang , et al . Relationship between the deep structure and Cenozoic/Mesozoic sediment basins in the northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 59-65.
王平, 夏戡原, 张毅祥, 等 . 南海东北部深部构造与中新生代沉积盆地[J]. 海洋地质与第四纪地质, 2002, 22(4): 59-65.
6 Bott M H P . The use of rapid digital computing methods for direct gravity interpretation of sedimentary basin[J]. Geophysical Journal of the Royal Astronomical Society, 1960, 3(1): 63-67.
7 Cordell L , Henderson R G . Iterative three-dimensional solution of gravity anomaly data using a digital computer[J]. Geophysics, 1968, 33(4): 596-601.
8 Lin Zhenmin , Yang Ming . A computer method for gravity interpretation of two-dimensional density contrast interface with some known depths[J]. Acta Geophysica Sinica,1985, 28(3): 311-321.
林振民, 阳明 .具有已知深度点的条件下解二度单一密度界面反问题的方法[J]. 地球物理学报, 1985, 28(3): 311-321.
9 Le?o J W D , Menezes P T L , Beltr?o J F , et al . Gravity inversion of basement relief constrained by the knowledge of depth at isolated points[J]. Geophysics, 1996, 61(6): 1 702-1 714.
10 Zhang Sheng , Meng Xiaohong . Constraint interface inversion with variable density model[J]. Progress in Geophysics, 2013, 28(4): 1 714-1 720.
张盛, 孟小红 . 约束变密度界面反演方法[J]. 地球物理学进展, 2013, 28(4): 1 714-1 720.
11 Prutkin I , Casten U . Efficient gravity data inversion for 3D topography of a contact surface with application to the Hellenic subduction zone[J]. Computers & Geosciences, 2009, 35(2): 225-233.
12 Zhou X . Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction method[J]. Geophysical Prospecting, 2013, 61(1): 220-234.
13 Silva J B C , Santos D F , Gomes K P . Fast gravity inversion of basement relief [J]. Geophysics, 2014, 79(5): G79-G91.
14 Pham L T , Oksum E , Do T D . GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins[J]. Computers & Geosciences, 2018, 120: 40-47.
15 Rao D B . Analysis of gravity anomalies over an inclined fault with quadratic density function[J]. Pure and Applied Geophysics, 1985,123(2): 250-260.
16 Chakravarthi V , Sundararajan N . Ridge-regression algorithm for gravity inversion of fault structures with variable density[J]. Geophysics, 2004, 69(6): 1 394-1 404.
17 Chakravarthi V , Sundararajan N . Gravity anomalies of 2.5-D multiple prismatic structures with variable density: A Marquardt inversion[J]. Pure and Applied Geophysics, 2006, 163(1): 229-242.
18 Chakravarthi V , Sundararajan N . 3D gravity inversion of basement relief—A depth-dependent density approach[J]. Geophysics, 2007, 72(2): I23-I32.
19 Chakravarthi V , Kumar M P , Ramamma B , et al . Automatic gravity modeling of sedimentary basins by means of polygonal source geometry and exponential density contrast variation: Two space domain based algorithms[J]. Journal of Applied Geophysics, 2016, 124: 54-61.
20 Chakravarthi V , Mallesh K , Ramamma B . Basement depth estimation from gravity anomalies: Two 2.5D approaches coupled with the exponential density contrast model[J]. Journal of Geophysics and Engineering, 2017, 14(2): 303-315.
21 Chakravarthi V , Sundararajan N . TODGINV—A code for optimization of gravity anomalies due to anticlinal and synclinal atructures with parabolic density contrast[J]. Computers & Geosciences, 2008, 34(8): 955-966.
22 Mojica O F , Bassrei A . Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: A parallel approach[J].Computers & Geosciences, 2015, 82: 205-213.
23 Barbosa V C F , Silva J B C , Medeiros W E . Gravity inversion of basement relief using approximate equality constraints on depth[J]. Geophysics, 1997, 62(6): 1 745-1 757.
24 Silva J B C , Costa D C L , Barbosa V C F . Gravity inversion of basement relief and estimation of density contrast variation with depth[J]. Geophysics, 2006, 71(5): J51-J58.
25 Martins C M , Barbosa V C F , Silva J B C . Simultaneous 3D depth-to-basement and density-contrast estimates using gravity data and depth control at few points[J]. Geophysics, 2010, 75(3): I21-I28.
26 Barbosa V C F , Silva J B C , Medeiros W E . Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth[J]. Geophysics, 1999, 64(5): 1 429-1 437.
27 Silva J B C , Oliveira A S , Barbosa V C F . Gravity inversion of 2D basement relief using entropic regularization[J]. Geophysics, 2010, 75(3): I29-I35.
28 Martins C M , Williams A L , Barbosa V C F , et al . Total variation regularization for depth-to-basement estimate: Part 1—Mathematical details and applications[J]. Geophysics, 2011, 76(1): I1-I12.
29 Lima W A , Martins C M , Silva J B C ,et al . Total variation regularization for depth-to-basement estimate: Part 2—Physicogeologic meaning and comparisons with previous inversion methods[J]. Geophysics, 2011, 76(1): I13-I20.
30 Feng Xuliang , Wang Wanyin , Liu Fuqiang , et al . 2D gravity inversion of basement relief of rift basin based on a dual interface model[J]. Chinese Journal of Geophysics, 2014, 57(6): 1 934-1 945.
冯旭亮, 王万银, 刘富强,等 .裂陷盆地基底双界面模式二维重力反演[J]. 地球物理学报, 2014, 57(6): 1 934-1 945.
31 Feng X , Wang W , Yuan B . 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques[J]. Geophysics, 2018, 83(5): G107-G118.
32 Sun J , Li Y . Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International, 2014, 197(2): 882-899.
33 Chen Z , Meng X , Zhang S . 3D gravity interface inversion constrained by a few points and its GPU acceleration[J].Computers & Geosciences, 2015, 84: 20-28.
34 Cai H , Zhdanov M . Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometrydata[J].Geophysics, 2015, 80(2): G81-G94.
35 Silva J B C , Santos D F . Efficient gravity inversion of basement relief using a versatile modeling algorithm[J].Geophysics, 2017, 82(2): G23-G34.
36 Tanner J G . An automated method of gravity interpretation[J].Geophysical Journal of the Royal Astronomical Society, 1967, 13(1/3): 339-347.
37 Liu Yuanlong , Wang Qianshen . Inversion of gravity data by use of a method of “compressed mass plane” to estimate crustal structure[J]. Acta Geophysica Sinica, 1977, 20(1): 59-69.
刘元龙, 王谦身 .用压缩质面法反演重力资料以估算地壳构造[J].地球物理学报, 1977, 20(1): 59-69.
38 Liu Yuanlong , Zheng Jianchang , Wu Chuanzhen . Inversion of the three dimensional density discontinuity by use of a method of “compressed mass plane coefficient” based on the gravity data[J]. Acta Geophysica Sinica, 1987, 30(2): 186-196.
刘元龙, 郑建昌, 武传珍 .利用重力资料反演三维密度界面的质面系数法[J].地球物理学报, 1987, 30(2): 186-196.
39 Hu Litian , Hao Tianyao . The inversion of three-dimensional density interface with control points[J]. Progress in Geophysics, 2014, 29(6): 2 498-2 503.
胡立天, 郝天珧 . 带控制点的三维密度界面反演方法[J].地球物理学进展, 2014, 29(6): 2 498-2 503.
40 Wang Hansheng , Chen Xue , Yang Hongzhi . An iterative method for inversion of deep-large-scale single density interface by using gravity anomaly data[J]. Acta Geophysica Sinica, 1993, 36(5): 643-650.
汪汉胜, 陈雪, 杨洪之 . 深部大尺度单一密度界面重力异常迭代反演[J]. 地球物理学报, 1993, 36(5): 643-650.
41 Wang Shuoru , Wang Bingzhu , Yu Zenghui . Interfacial models of variable density and gravity inversion by B-spline[J]. Progress in Geophysics, 1996, 11(3): 40-52.
王硕儒, 汪炳柱, 于增慧 . 变密度界面模型重力异常反演的B样条函数法[J]. 地球物理学进展, 1996, 11(3): 40-52.
42 Murthy I V R , Rao D B . Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth[J]. Geophysics, 1979, 44(9): 1 525-1 530.
43 Garciá-Abdeslem J . 2D modeling and inversion of gravity data using density contrast varying with depth and source-basement geometry described by the Fourier series[J]. Geophysics, 2003, 68(6): 1 909-1 916.
44 Cordell L . Gravity anomalies using an exponential density-depth function-San Jacinto graben, California[J]. Geophysics, 1973, 38(4): 684-690.
45 Rao C V , Chakravarthi V , Raju M L . Forward modeling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions[J]. Computers & Geosciences, 1994, 20(5): 873-880.
46 Litinsky V A . Concept of effective density: Key to gravity depth determinations for sedimentary basins[J]. Geophysics, 1989, 54(11): 1 474-1 482.
47 Santos D F , Silva J B C , Martins C M , et al . Efficient gravity inversion of discontinuous basement relief[J]. Geophysics, 2015, 80(4): G95-G106.
48 Marquardt D W . An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441.
49 Xia Jianghai . Solving inversion problem of two-dimensional single density interface by singular value decomposition[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1986, 8(2): 128-133.
夏江海 .利用奇异值分界求二维单一密度界面的反问题[J]. 物化探计算技术, 1986, 8(2): 128-133.
50 Yang Qiang . The inversion of two-dimensional mono-density interface by conjugate gradient method[J]. Geology of Guangxi, 1989, 2(1): 51-59.
杨强 .用共轭梯度法反演二维单一密度界面[J]. 广西地质, 1989, 2(1): 51-59.
51 Zhu Ziqiang , Cheng Fangdao , Huang Guoxiang . Quasi neural BP algorithm for simultaneous inversion of two 3-D density interfaces[J]. Geophysical Prospecting for Petroleum, 1995, 34(1): 76-85.
朱自强, 程方道, 黄国祥 . 同时反演两个三维密度界面的拟神经网络BP算法[J]. 石油物探, 1995, 34(1): 76-85.
52 Zhang Dailei , Huang Danian , Zhang Chong . Application of BP neural network based on genetic algorithm in the inversion of density interface[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(62): 580-588.
张代磊, 黄大年, 张冲 .基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报:地球科学版, 2017, 47(62): 580-588.
53 Liu Yunfeng , Shen Xiaohua . Nonlinear inversion of gravity anomalies caused by 2-D surface of geologic structures genetic algorithms[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997, 19(2): 138-142.
刘云峰, 沈晓华 . 二维密度界面的遗传算法反演[J]. 物探化探计算技术, 1997, 19(2): 138-142.
54 Ke Xiaoping , Wang Yong , Xu Houze , et al . 3D moho depth inversion of Eastern Tibetan Plateau from gravity data with genetic algorithm[J]. Journal of Geodesy and Geodynamics, 2006, 26(1): 100-104.
柯小平, 王勇, 许厚泽,等 . 青藏东缘三维Moho界面的位场遗传算法反演[J]. 大地测量与地球动力学, 2006, 26(1): 100-104.
55 Li Lili , Ma Guoqing . The inversion of seabed terrain of the South China Sea by simulated annealing based on gravity gradient data[J]. Progress in Geophysics, 2014, 29(2): 931-935.
李丽丽, 马国庆 . 基于重力梯度的模拟退火法反演中国南海海底地形[J]. 地球物理学进展, 2014, 29(2): 931-935.
56 Qin Jingxin , Hao Tianyao , Guo Ziqi , et al . The density interface inversion method of improved adaptive simulated annealing[J]. Progress in Geophysics, 2014, 29(5): 2 060-2 065.
秦静欣, 郝天珧, 郭子琪,等 . 改进的自适应模拟退火密度界面反演方法[J]. 地球物理学进展, 2014, 29(5): 2 060-2 065.
57 Pallero J L G , Fernández-Martínez J L , Bonvalot S , et al . 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization[J]. Journal of Applied Geophysics, 2017, 139: 338-350.
58 Tikhonov A N , Arsenin V I A , John F . Solutions of Ill-posed Problems[M]. Washington DC:V H Winston & Sons, 1977: 45-95.
59 Rao B S R , Murthy I V R , Rao V C . A successive approximation method of deriving residual gravity[J]. Geoexploration, 1975, 13(1/4): 129-135.
60 Li Jiuliang . Variable-order sliding trend analysis method used in the division of regional and local gravity anomalies[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1998, 20(1): 53-61.
李九亮 .划分重力区域异常与局部异常的变阶次滑动趋势分析法[J]. 物探化探计算技术, 1998, 20(1): 53-61.
61 Yang Chunhua . The application of the sieving-trend analysis method to separating regional anomaly from local anomaly[J]. Geophysical & Geochemical Exploration, 2005, 29(2): 167-170.
羊春华 .筛选—趋势分析法分离区域异常与局部异常[J]. 物探与化探, 2005, 29(2): 167-170.
62 Cheng Fangdao , Liu Dongjia , Yao Ruxin . A study on the identification of regional and local gravity fields[J]. Computing techniques for Geophysical and Geochemical Exploration, 1987, 9(1): 1-9.
程方道, 刘东甲, 姚汝信 .划分重力区域场与局部场的研究[J]. 物探化探计算技术, 1987, 9(1): 1-9.
63 Wen Baihong , Cheng Fangdao . A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. Journal of Central South University, 1990, 21(3): 229-235.
文百红, 程方道 .用于划分磁异常的新方法——插值切割法[J]. 中南矿冶学院学报, 1990, 21(3): 229-235.
64 Hou Zunze , Yang Wencai . An operational research on the wavelet analysis[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1995, 17(3): 1-9.
侯遵泽, 杨文采 .小波分析应用研究[J]. 物探化探计算技术, 1995, 17(3): 1-9.
65 Li Zongjie , Yang Lin . Application of the wavelet transform in potential field data processing[J]. Geophysical Prospecting for Petroleum, 1997, 36(2): 86-93.
李宗杰, 杨林 .小波变换在位场数据处理中的应用[J]. 石油物探, 1997, 36(2): 86-93.
66 Syberg F J R . A fourier method for the regional residual problem of potential fields[J]. Geophysical Prospecting, 1972, 20(1): 47-75.
67 Li Chunhua . A kind of approximate calculation for the upward continuation of three-dimensional gravity and magnetic anomalies[J]. Journal of East China College of Geology, 1987, 10(1): 70-75.
黎春华 .一种三维重、磁异常的向上延拓的近似计算[J]. 华东地质学报, 1987, 10(1): 70-75.
68 Xu Shizhe . The intergral-iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006, 59(4): 1 176-1 182.
徐世浙 .位场延拓的积分—迭代法[J]. 地球物理学报, 2006, 59(4): 1 176-1 182.
69 García-Abdeslem J . Nonlinear inversion of isostatic residual gravity data from Montage Basin, northern Gulf of California[J]. Geophysics, 2017, 82(3): G45-G55.
[1] 孙和平, 孙文科, 申文斌, 申重阳, 祝意青, 付广裕, 吴书清, 崔小明, 陈晓东. 地球重力场及其地学应用研究进展——2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460.
[2] 栾威, 申文斌. 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021, 36(5): 461-471.
[3] 朱栋, 高世腾, 朱欣欣, 吴彬, 程冰, 林强. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
[4] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[5] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[6] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[7] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[8] 赵丕, 何志堂, 罗铖, 康胜军, 史志刚. CG6型相对重力仪比例因子两种标定结果比对分析[J]. 地球科学进展, 2021, 36(5): 528-535.
[9] 粟多武, 吴书清, 李春剑, 吉望西, 徐进义, 王启宇, 冯金扬, 胡若, 牟丽爽. 国家重力计量参考网的初步建立研究[J]. 地球科学进展, 2021, 36(5): 536-542.
[10] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[11] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[12] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[13] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[14] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[15] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
阅读次数
全文


摘要