地球科学进展 ›› 2021, Vol. 36 ›› Issue (5): 528 -535. doi: 10.11867/j.issn.1001-8166.2021.018

新学科·新技术·新发现 上一篇    下一篇

CG6型相对重力仪比例因子两种标定结果比对分析
赵丕( ), 何志堂( ), 罗铖, 康胜军, 史志刚   
  1. 自然资源部第一大地测量队,陕西 西安 710054
  • 收稿日期:2020-12-29 修回日期:2021-03-05 出版日期:2021-06-18
  • 通讯作者: 何志堂 E-mail:583954561@qq.com;547060281@qq.com
  • 基金资助:
    国家自然科学基金面上项目“局部地质水文特征对地表重力观测影响研究”(41774093);国家自然科学基金青年科学基金项目“红河断裂带北、中段及邻区现今地壳深部变形的重力学研究”(41604014)

Comparison and Analysis of Two Different Calibration Results of Scale Factor of CG6 Relative Gravimeter

Pi ZHAO( ), Zhitang HE( ), Cheng LUO, Shengjun KANG, Zhigang SHI   

  1. The First Geodetic Surveying Brigade of Ministry of Natural Resources,Xi'an 710054,China
  • Received:2020-12-29 Revised:2021-03-05 Online:2021-06-18 Published:2021-07-02
  • Contact: Zhitang HE E-mail:583954561@qq.com;547060281@qq.com
  • About author:ZHAO Pi (1986-), male, Xi'an City, Shaanxi Province, Engineer. Research areas include gravity measurement. E-mail: 583954561@qq.com
  • Supported by:
    the National Natural Science Foundation of China "Research of the effect of local geological and hydrological model on gravity measurement"(41774093);"Study on present deep crust deformation in northern and middle of the Red River fault zone by gravity method"(41604014)

比例因子一直是影响相对重力测量精度的重要因素之一。根据不同方法标定相对重力仪比例因子,对相对重力测量数据进行计算,其结果精度存在一定的不同。利用CG6型相对重力仪比例因子的两种标定结果(重力长基线标定值和测区重力基准点之间标定值),对2019年和2020年中国大陆构造环境监测网络西藏测区相对重力联测数据进行处理,并对结果精度进行比对分析。结果表明,采用在测区重力基准点间标定比例因子计算的成果精度,优于在重力长基线标定比例因子计算的成果精度。

Scale factor is always one of the most important factors which affect the accuracy of relative gravity measurement. The scale factors from different calibration methods are used to calculate the same relative gravity measurement data and therefore the accuracy of the results are different. Based on the different scale factors of CG6 relative gravimeter(Calibration factor calculated by the gravity long baseline or the gravity datum points in the measurement area),the gravity measurement data of Tibet area in Crustal Movement Observation Network of China in 2019 and 2020 were calculated, and then the calculated results is compared and analyzed. The results show that the accuracy calculated by calibrating the scale factor between the gravity datum points in the measurement area is better than that calculated by calibrating the scale factor on the gravity long baseline.

中图分类号: 

表1 CG6型相对重力仪固定比例因子表
Table 1 Fixed scale factor of CG6 relative gravimeter
表1 CG6型相对重力仪固定比例因子表
Table 1 Fixed scale factor of CG6 relative gravimeter
图1 陆态网络西藏测区重力网2019年联测图
Fig.1 Gravity network in Tibet of CMONOC in 2019
图1 陆态网络西藏测区重力网2019年联测图
Fig.1 Gravity network in Tibet of CMONOC in 2019
图2 陆态网络西藏测区重力网2020年联测图
Fig.2 Gravity network in Tibet of CMONOC in 2020
图2 陆态网络西藏测区重力网2020年联测图
Fig.2 Gravity network in Tibet of CMONOC in 2020
表2 实测比例因子成果表
Table 2 Measured results of scale factor
表2 实测比例因子成果表
Table 2 Measured results of scale factor
表3 平差后点位精度统计表
Table 3 Statistics of point accuracy after adjustment
序号 点号 点名 2019年精度/(×10-5 m/s2 2020年精度/(×10-5 m/s2
固定 实测 固定 实测
点值平均精度 0.0067 0.0049 0.0131 0.0062
1 65008700 喀伽87 0.0096 0.0066 0.0182 0.0072
2 65008701 喀伽87-1 / / 0.0197 0.0078
3 10508300 阿克美其特 0.0097 0.0067 0.0207 0.0081
4 10524600 麻扎 0.0096 0.0067 0.0203 0.0080
5 10631200 康西瓦 0.0095 0.0066 0.0196 0.0077
6 10237700 甜水海 0.0091 0.0063 0.0188 0.0074
7 10128700 日土 0.0071 0.0049 0.0131 0.0052
8 10127900 噶尔 0.0051 0.0035 0.0088 0.0035
9 10642201 狮泉河重力台 0.0058 0.0040 0.0106 0.0042
10 10234100 夏木 0.0064 0.0044 0.0116 0.0045
11 10234200 多玛 0.0080 0.0055 0.0151 0.0059
12 10632301 松西 0.0087 0.0060 0.0166 0.0065
13 10237400 革吉 0.0062 0.0043 0.0118 0.0046
14 10127200 巴嘎 0.0064 0.0044 0.0116 0.0045
15 10631100 盐湖 0.0068 0.0047 0.0133 0.0052
16 10234000 桑木桑 0.0059 0.0041 0.0106 0.0042
17 10235400 达热布 0.0071 0.0049 0.0140 0.0055
18 10104400 改则 0.0069 0.0048 0.0138 0.0054
19 10129700 仲巴 0.0048 0.0033 0.0085 0.0033
20 10602000 洞错 0.0063 0.0044 0.0125 0.0049
21 10641200 措勤新 0.0065 0.0045 0.0130 0.0051
22 10632200 诺仓 0.0062 0.0043 0.0120 0.0047
23 10641100 拉嘎新 0.0053 0.0037 0.0103 0.0040
24 10213200 拉冲 0.0066 0.0046 0.0127 0.0050
25 10127100 昂仁 0.0057 0.0040 0.0110 0.0043
26 10104900 尼玛 0.0065 0.0045 0.0122 0.0048
27 10601900 拉孜 0.0055 0.0038 0.0101 0.0040
28 20170002 申扎县 0.0063 0.0044 0.0117 0.0046
29 10128000 日喀则 0.0044 0.0030 0.0077 0.0030
30 10106000 亚东 0.0069 0.0048 0.0138 0.0054
31 20170374 雄梅镇 0.0058 0.0040 0.0108 0.0043
32 20170003 南木林 0.0057 0.0040 0.0103 0.0041
33 20170103 仁堆乡 0.0063 0.0044 0.0115 0.0045
34 10233900 江孜 0.0050 0.0034 0.0088 0.0035
35 10104901 班戈 0.0056 0.0039 0.0105 0.0041
36 10642100 拉萨绝对 0.0044 0.0031 0.0078 0.0030
37 10212800 当雄 0.0051 0.0035 0.0094 0.0037
38 10130200 那曲气象局 0.0066 0.0046 0.0119 0.0047
39 10130202 那曲绝对 0.0046 0.0032 0.0082 0.0032
表3 平差后点位精度统计表
Table 3 Statistics of point accuracy after adjustment
序号 点号 点名 2019年精度/(×10-5 m/s2 2020年精度/(×10-5 m/s2
固定 实测 固定 实测
点值平均精度 0.0067 0.0049 0.0131 0.0062
1 65008700 喀伽87 0.0096 0.0066 0.0182 0.0072
2 65008701 喀伽87-1 / / 0.0197 0.0078
3 10508300 阿克美其特 0.0097 0.0067 0.0207 0.0081
4 10524600 麻扎 0.0096 0.0067 0.0203 0.0080
5 10631200 康西瓦 0.0095 0.0066 0.0196 0.0077
6 10237700 甜水海 0.0091 0.0063 0.0188 0.0074
7 10128700 日土 0.0071 0.0049 0.0131 0.0052
8 10127900 噶尔 0.0051 0.0035 0.0088 0.0035
9 10642201 狮泉河重力台 0.0058 0.0040 0.0106 0.0042
10 10234100 夏木 0.0064 0.0044 0.0116 0.0045
11 10234200 多玛 0.0080 0.0055 0.0151 0.0059
12 10632301 松西 0.0087 0.0060 0.0166 0.0065
13 10237400 革吉 0.0062 0.0043 0.0118 0.0046
14 10127200 巴嘎 0.0064 0.0044 0.0116 0.0045
15 10631100 盐湖 0.0068 0.0047 0.0133 0.0052
16 10234000 桑木桑 0.0059 0.0041 0.0106 0.0042
17 10235400 达热布 0.0071 0.0049 0.0140 0.0055
18 10104400 改则 0.0069 0.0048 0.0138 0.0054
19 10129700 仲巴 0.0048 0.0033 0.0085 0.0033
20 10602000 洞错 0.0063 0.0044 0.0125 0.0049
21 10641200 措勤新 0.0065 0.0045 0.0130 0.0051
22 10632200 诺仓 0.0062 0.0043 0.0120 0.0047
23 10641100 拉嘎新 0.0053 0.0037 0.0103 0.0040
24 10213200 拉冲 0.0066 0.0046 0.0127 0.0050
25 10127100 昂仁 0.0057 0.0040 0.0110 0.0043
26 10104900 尼玛 0.0065 0.0045 0.0122 0.0048
27 10601900 拉孜 0.0055 0.0038 0.0101 0.0040
28 20170002 申扎县 0.0063 0.0044 0.0117 0.0046
29 10128000 日喀则 0.0044 0.0030 0.0077 0.0030
30 10106000 亚东 0.0069 0.0048 0.0138 0.0054
31 20170374 雄梅镇 0.0058 0.0040 0.0108 0.0043
32 20170003 南木林 0.0057 0.0040 0.0103 0.0041
33 20170103 仁堆乡 0.0063 0.0044 0.0115 0.0045
34 10233900 江孜 0.0050 0.0034 0.0088 0.0035
35 10104901 班戈 0.0056 0.0039 0.0105 0.0041
36 10642100 拉萨绝对 0.0044 0.0031 0.0078 0.0030
37 10212800 当雄 0.0051 0.0035 0.0094 0.0037
38 10130200 那曲气象局 0.0066 0.0046 0.0119 0.0047
39 10130202 那曲绝对 0.0046 0.0032 0.0082 0.0032
图3 20192种比例因子计算平差精度统计
Fig.3 Statistics of adjustment accuracy by using two kinds of scale factors in 2019
图3 20192种比例因子计算平差精度统计
Fig.3 Statistics of adjustment accuracy by using two kinds of scale factors in 2019
图4 20202种比例因子计算平差精度统计
Fig.4 Statistics of adjustment accuracy by using two kinds of scale factors in 2020
图4 20202种比例因子计算平差精度统计
Fig.4 Statistics of adjustment accuracy by using two kinds of scale factors in 2020
1 CHEN Xiaodong, LI Hang, DENG Mingli,et al. Experimental study of the surface subsidence in the city using gravity observing techniques[J]. Chinese Journal of Geophysics,2020,63(8): 2 882-2 892.
CHEN Xiaodong, LI Hang, DENG Mingli,et al. Experimental study of the surface subsidence in the city using gravity observing techniques[J]. Chinese Journal of Geophysics,2020,63(8): 2 882-2 892.
陈晓东,李航,邓明莉,等.用重力测量技术观测城市地表下沉的实验研究[J].地球物理学报,2020,63(8):2 882-2 892.
陈晓东,李航,邓明莉,等.用重力测量技术观测城市地表下沉的实验研究[J].地球物理学报,2020,63(8):2 882-2 892.
2 MAO Jinglun, ZHU Yiqing. Progress in the application of ground gravity observation data in earthquake prediction[J]. Advances in Earth Science, 2018, 33(3): 236-247.
MAO Jinglun, ZHU Yiqing. Progress in the application of ground gravity observation data in earthquake prediction[J]. Advances in Earth Science, 2018, 33(3): 236-247.
毛经伦,祝意青.地面重力观测数据在地震预测中的应用研究与进展[J].地球科学进展,2018,33(3):236-247.
毛经伦,祝意青.地面重力观测数据在地震预测中的应用研究与进展[J].地球科学进展,2018,33(3):236-247.
3 ZHU Yiqing,LIANG Weifeng,ZHAO Yunfeng, et al. Gravity changes before the Jiuzhaigou,Sichuan, MS7.0 earthquake of 2017[J]. Chinese Journal of Geophysics, 2017,60(10):4 124-4 131.
ZHU Yiqing,LIANG Weifeng,ZHAO Yunfeng, et al. Gravity changes before the Jiuzhaigou,Sichuan, MS7.0 earthquake of 2017[J]. Chinese Journal of Geophysics, 2017,60(10):4 124-4 131.
祝意青,梁伟锋,赵云峰,等. 2017年四川九寨沟MS7.0地震前区域重力场变化[J].地球物理学报,2017,60(10):4 124-4 131.
祝意青,梁伟锋,赵云峰,等. 2017年四川九寨沟MS7.0地震前区域重力场变化[J].地球物理学报,2017,60(10):4 124-4 131.
4 ZHU Yiqing,LIANG Weifeng,XU Yunma. Medium-term prediction of MS8.0 earthquake in Wenchuan,Sichuan by mobile gravity[J]. Recent Developments in World Seismology, 2008(7):36-39.
ZHU Yiqing,LIANG Weifeng,XU Yunma. Medium-term prediction of MS8.0 earthquake in Wenchuan,Sichuan by mobile gravity[J]. Recent Developments in World Seismology, 2008(7):36-39.
祝意青,梁伟锋,徐云马.重力资料对2008年汶川MS8.0地震的中期预测[J].国际地震动态,2008(7):36-39.
祝意青,梁伟锋,徐云马.重力资料对2008年汶川MS8.0地震的中期预测[J].国际地震动态,2008(7):36-39.
5 ZHU Yiqing,ZHANG Yong,ZHANG Guoqing,et al. Gravity variations preceding the large earthquakes in the Qinghai-Tibet Plateau from 21st century[J]. Chinese Science Bulletin, 2020,65(7):622-632.
ZHU Yiqing,ZHANG Yong,ZHANG Guoqing,et al. Gravity variations preceding the large earthquakes in the Qinghai-Tibet Plateau from 21st century[J]. Chinese Science Bulletin, 2020,65(7):622-632.
祝意青,张勇,张国庆,等.21世纪以来青藏高原大震前重力变化[J].科学通报,2020,65(7):622-632.
祝意青,张勇,张国庆,等.21世纪以来青藏高原大震前重力变化[J].科学通报,2020,65(7):622-632.
6 WANG Qinghua,ZHAO Yunfeng,CHEN Zhaohui, et al. Gravity field change before the 2018 Mojiang M5.9 earthquake,Yunnan[J]. Journal of Seismological Research, 2020,43(2):382-387.
WANG Qinghua,ZHAO Yunfeng,CHEN Zhaohui, et al. Gravity field change before the 2018 Mojiang M5.9 earthquake,Yunnan[J]. Journal of Seismological Research, 2020,43(2):382-387.
王青华,赵云峰,陈兆辉,等. 2018年云南墨江M5.9地震前的重力变化[J].地震研究,2020,43(2):382-387.
王青华,赵云峰,陈兆辉,等. 2018年云南墨江M5.9地震前的重力变化[J].地震研究,2020,43(2):382-387.
7 DENG Mingli, SUN Heping, XU Jianqiao, et al. Theoretical simulation of co-seismic and gravity changes of Lushan Earthquake[J]. Earth Science, 2014,39(9):1 373-1 382.
DENG Mingli, SUN Heping, XU Jianqiao, et al. Theoretical simulation of co-seismic and gravity changes of Lushan Earthquake[J]. Earth Science, 2014,39(9):1 373-1 382.
邓明莉,孙和平,徐建桥,等.芦山地震同震和震后地表形变及重力变化的理论模拟[J].地球科学,2014,39(9):1 373-1 382.
邓明莉,孙和平,徐建桥,等.芦山地震同震和震后地表形变及重力变化的理论模拟[J].地球科学,2014,39(9):1 373-1 382.
8 ZHANG Yongzhi,ZHU Guizhi, ZHU Yiqing.Study on earthquake activities and damage evol ution by using repeated gravity observations[J].Crustal Deformation & Earthquake,2001(3):14-20.
ZHANG Yongzhi,ZHU Guizhi, ZHU Yiqing.Study on earthquake activities and damage evol ution by using repeated gravity observations[J].Crustal Deformation & Earthquake,2001(3):14-20.
张永志,朱桂芝,祝意青.利用重复重力观测资料研究地震活动与地壳的损伤演化过程[J].地壳形变与地震,2001(3):14-20.
张永志,朱桂芝,祝意青.利用重复重力观测资料研究地震活动与地壳的损伤演化过程[J].地壳形变与地震,2001(3):14-20.
9 SUN Heping,XU Jianqiao,CUI Xiaoming. Research progress of the gravity field application in Earth's geodynamics and interior structure[J].Acta Geodaetica et Cartographica Sinica, 2017,46(10):1 290-1 299.
SUN Heping,XU Jianqiao,CUI Xiaoming. Research progress of the gravity field application in Earth's geodynamics and interior structure[J].Acta Geodaetica et Cartographica Sinica, 2017,46(10):1 290-1 299.
孙和平,徐建桥,崔小明.重力场的地球动力学与内部结构应用研究进展[J].测绘学报,2017,46(10):1 290-1 299.
孙和平,徐建桥,崔小明.重力场的地球动力学与内部结构应用研究进展[J].测绘学报,2017,46(10):1 290-1 299.
10 WANG Jian, SHEN Chongyang, LI Hui, et al. Gravity inversion for deep crust-mantle interface in Three Gorges region[J]. Acta Seismologica Sinica, 2014,36(1): 70-83.
WANG Jian, SHEN Chongyang, LI Hui, et al. Gravity inversion for deep crust-mantle interface in Three Gorges region[J]. Acta Seismologica Sinica, 2014,36(1): 70-83.
汪健,申重阳,李辉,等.三峡地区壳幔深部界面重力反演[J].地震学报,2014,36(1):70-83.
汪健,申重阳,李辉,等.三峡地区壳幔深部界面重力反演[J].地震学报,2014,36(1):70-83.
11 TIAN Guie, CHEN Xiaodong, WU Shuqing, et al. Correction of measured gravity tides with FG5 absolute gravimeter observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 870-878.
TIAN Guie, CHEN Xiaodong, WU Shuqing, et al. Correction of measured gravity tides with FG5 absolute gravimeter observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 870-878.
田桂娥,陈晓东,吴书清,等.FG5绝对重力仪观测数据的实测重力潮汐改正[J].武汉大学学报:信息科学版,2020,45(6):870-878.
田桂娥,陈晓东,吴书清,等.FG5绝对重力仪观测数据的实测重力潮汐改正[J].武汉大学学报:信息科学版,2020,45(6):870-878.
12 SUN Heping, LIU Qingchao, WU Shuqing, et al. The latest gravity tide results in Beijing and its application in detecting resonant effect of the fluid outer core[J]. Chinese Journal of Geophysics,2017,60(12): 4 699-4 708.
SUN Heping, LIU Qingchao, WU Shuqing, et al. The latest gravity tide results in Beijing and its application in detecting resonant effect of the fluid outer core[J]. Chinese Journal of Geophysics,2017,60(12): 4 699-4 708.
孙和平,刘清超,吴书清,等.北京地区最新重力潮汐结果及其在检测液核共振效应中的应用[J].地球物理学报,2017,60(12):4 699-4 708.
孙和平,刘清超,吴书清,等.北京地区最新重力潮汐结果及其在检测液核共振效应中的应用[J].地球物理学报,2017,60(12):4 699-4 708.
13 HAN Yufei, HE Zhitang, LIU Yang,et al. Reform and repetition measurement of Lingshan gravity calibration baseline field[J]. Journal of Geomatics, 2017, 42(4): 69-72.
HAN Yufei, HE Zhitang, LIU Yang,et al. Reform and repetition measurement of Lingshan gravity calibration baseline field[J]. Journal of Geomatics, 2017, 42(4): 69-72.
韩宇飞,何志堂,刘阳,等.灵山重力标定基线场的升级改造与复测[J].测绘地理信息,2017,42(4):69-72.
韩宇飞,何志堂,刘阳,等.灵山重力标定基线场的升级改造与复测[J].测绘地理信息,2017,42(4):69-72.
14 HE Zhitang,HAN Yufei,KANG Shengjun,et al.Initial value measurement and data analysis of Lingshan gravity baseline field in land network[J]. Geospatial Information,2016,14(5):100-102,108.
HE Zhitang,HAN Yufei,KANG Shengjun,et al.Initial value measurement and data analysis of Lingshan gravity baseline field in land network[J]. Geospatial Information,2016,14(5):100-102,108.
何志堂,韩宇飞,康胜军,等.陆态网络灵山重力基线场初值测定与数据分析[J].地理空间信息,2016,14(5):100-102,108.
何志堂,韩宇飞,康胜军,等.陆态网络灵山重力基线场初值测定与数据分析[J].地理空间信息,2016,14(5):100-102,108.
15 Dongchen E, HE Zhitang, WANG Zemin,et al. Establishment of absolute gravity datum in great wall station,West Antarctica[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 688-691.
Dongchen E, HE Zhitang, WANG Zemin,et al. Establishment of absolute gravity datum in great wall station,West Antarctica[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 688-691.
鄂栋臣,何志堂,王泽民,等.中国南极长城站绝对重力基准的建立[J].武汉大学学报:信息科学版,2007, 32(8):688-691.
鄂栋臣,何志堂,王泽民,等.中国南极长城站绝对重力基准的建立[J].武汉大学学报:信息科学版,2007, 32(8):688-691.
16 XING Lelin,LI Hui,LI Jianguo,et al. Establishment of absolute gravity datum in CMONOC and its application[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(5):538-543.
XING Lelin,LI Hui,LI Jianguo,et al. Establishment of absolute gravity datum in CMONOC and its application[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(5):538-543.
邢乐林,李辉,李建国,等.陆态网络绝对重力基准的建立及应用[J].测绘学报,2016,45(5):538-543.
邢乐林,李辉,李建国,等.陆态网络绝对重力基准的建立及应用[J].测绘学报,2016,45(5):538-543.
17 HE Zhitang,HAN Yufei,KANG Shengjun, et al. Analysis of absolute gravity measurements results in the western region of phase Ⅱ China continental tectonics environmental monitoring network[J]. Journal of Geodesy and Geodynamics, 2015,35(6):927-930.
HE Zhitang,HAN Yufei,KANG Shengjun, et al. Analysis of absolute gravity measurements results in the western region of phase Ⅱ China continental tectonics environmental monitoring network[J]. Journal of Geodesy and Geodynamics, 2015,35(6):927-930.
何志堂,韩宇飞,康胜军,等.“陆态网络”Ⅱ期西部绝对重力测定结果分析[J].大地测量与地球动力学,2015,35(6):927-930.
何志堂,韩宇飞,康胜军,等.“陆态网络”Ⅱ期西部绝对重力测定结果分析[J].大地测量与地球动力学,2015,35(6):927-930.
18 WEI Shouchun,ZHU Yiqing,ZHAO Yunfeng,et al. Impact on gravity data process of scale factor coefficient of CG-5 gravimeter[J]. Journal of Geodesy and Geodynamics,2019, 39(2): 210-214.
WEI Shouchun,ZHU Yiqing,ZHAO Yunfeng,et al. Impact on gravity data process of scale factor coefficient of CG-5 gravimeter[J]. Journal of Geodesy and Geodynamics,2019, 39(2): 210-214.
隗寿春,祝意青,赵云峰,等. CG-5重力仪格值系数对重力数据处理的影响[J].大地测量与地球动力学,2019,39(2):210-214.
隗寿春,祝意青,赵云峰,等. CG-5重力仪格值系数对重力数据处理的影响[J].大地测量与地球动力学,2019,39(2):210-214.
19 HAO Hongtao, LI Hui, SUN Heping, et al. Application of zero drift correct and detection of scale parameters of CG-5 gravimeter[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 265-1 271.
HAO Hongtao, LI Hui, SUN Heping, et al. Application of zero drift correct and detection of scale parameters of CG-5 gravimeter[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 265-1 271.
郝洪涛,李辉,孙和平,等.CG-5重力仪零漂改正及格值系数检测应用研究[J].武汉大学学报:信息科学版,2016,41(9):1 265-1 271.
郝洪涛,李辉,孙和平,等.CG-5重力仪零漂改正及格值系数检测应用研究[J].武汉大学学报:信息科学版,2016,41(9):1 265-1 271.
20 LIANG Weifeng,LIU Fang,ZHU Yiqing, et al. Research on the effect of one degree term of chromatic polynomial of gravimeter on gravity dynamic change[J]. Journal of Geodesy and Geodynamics, 2015,35(5):882-886.
LIANG Weifeng,LIU Fang,ZHU Yiqing, et al. Research on the effect of one degree term of chromatic polynomial of gravimeter on gravity dynamic change[J]. Journal of Geodesy and Geodynamics, 2015,35(5):882-886.
梁伟锋,刘芳,祝意青,等.重力仪一次项系数对重力场动态变化的影响研究[J].大地测量与地球动力学,2015,35(5):882-886.
梁伟锋,刘芳,祝意青,等.重力仪一次项系数对重力场动态变化的影响研究[J].大地测量与地球动力学,2015,35(5):882-886.
21 CHEN Xiaodong,SUN Heping,XU Jianqiao,et al. Two applied methods for calibrating the gravimeters[C]. Chinese Geophysical Society,2011:919.
CHEN Xiaodong,SUN Heping,XU Jianqiao,et al. Two applied methods for calibrating the gravimeters[C]. Chinese Geophysical Society,2011:919.
陈晓东,孙和平,徐建桥,等. 两种实用的重力仪标定方法[C].中国地球物理学会,2011:919.
陈晓东,孙和平,徐建桥,等. 两种实用的重力仪标定方法[C].中国地球物理学会,2011:919.
22 Institute of Standardization of MNR. Specifications for the gravimetry control:[S]. Beijing:Standards Press of China,2019.[自然资源部测绘标准化研究所.国家重力控制测量规范: [S]. 北京:中国标准出版社,2019.]
Institute of Standardization of MNR. Specifications for the gravimetry control:[S]. Beijing:Standards Press of China,2019.[自然资源部测绘标准化研究所.国家重力控制测量规范: [S]. 北京:中国标准出版社,2019.]
23 XUAN Songbai,WANG Jian,LI Jie, et al. Performance analysis on a new generation of the CG-6 gravimeter[J]. Journal of Geodesy and Geodynamics, 2018,38(1):5-7.
XUAN Songbai,WANG Jian,LI Jie, et al. Performance analysis on a new generation of the CG-6 gravimeter[J]. Journal of Geodesy and Geodynamics, 2018,38(1):5-7.
玄松柏,汪健,李杰,等.新一代CG-6重力仪性能分析[J].大地测量与地球动力学,2018,38(1):5-7.
玄松柏,汪健,李杰,等.新一代CG-6重力仪性能分析[J].大地测量与地球动力学,2018,38(1):5-7.
24 LIU Shaofu,LIU Dongzhi,LI Hui. Adjustment of high precison gravity measurement and its software[J]. Earthquake, 1991(4):57-58.
LIU Shaofu,LIU Dongzhi,LI Hui. Adjustment of high precison gravity measurement and its software[J]. Earthquake, 1991(4):57-58.
刘绍府,刘冬至,李辉.高精度重力测量平差及其软件[J].地震,1991(4):57-58.
刘绍府,刘冬至,李辉.高精度重力测量平差及其软件[J].地震,1991(4):57-58.
25 XING Lelin, BAI Lei, NIU Xiaowei, et al. A new and high-precision gravity base network in the south of the Tibetan Plateau[J]. Geodesy and Geodynamics, 2020,11(4):258-264.
XING Lelin, BAI Lei, NIU Xiaowei, et al. A new and high-precision gravity base network in the south of the Tibetan Plateau[J]. Geodesy and Geodynamics, 2020,11(4):258-264.
[1] 粟多武, 吴书清, 李春剑, 吉望西, 徐进义, 王启宇, 冯金扬, 胡若, 牟丽爽. 国家重力计量参考网的初步建立研究[J]. 地球科学进展, 2021, 36(5): 536-542.
[2] 唐子剑, 康明, 李军. 基于勘探工程位置建模方法和储量估算[J]. 地球科学进展, 2017, 32(8): 839-849.
[3] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[4] 曲伟, 路京选, 宋文龙, 张婷婷, 谭亚男, 黄萍. TRMM遥感降水数据在伊洛瓦底江流域的精度检验和校正方法研究[J]. 地球科学进展, 2014, 29(11): 1262-1270.
[5] 王振宇, 杨勤勇, 李振春, 胡光辉, 尹力, 王杰. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1138-1148.
[6] 刘睿,孙九林,王卷乐,廖秀英. 环境与灾害监测预报小卫星CCD数据质量评价[J]. 地球科学进展, 2011, 26(9): 971-979.
[7] 李爱华,柏延臣. 多源遥感专题信息比较研究:现状、问题与展望[J]. 地球科学进展, 2011, 26(7): 741-750.
[8] 吴兆福,高飞,陶庭叶. 小波变换后的噪声信息在大坝变形监测精度评定中的应用[J]. 地球科学进展, 2008, 23(6): 590-594.
[9] 袁修孝. 航空摄影测量影像定向的若干探讨[J]. 地球科学进展, 2007, 22(8): 828-834.
[10] 王开存;周秀骥;李维亮;刘晶淼;王普才. 利用卫星遥感资料反演感热和潜热通量的研究综述[J]. 地球科学进展, 2005, 20(1): 42-048.
阅读次数
全文


摘要