地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1138 -1148. doi: 10.11867/j.issn.1001-8166.2014.10.1138

上一篇    下一篇

近地表速度建模研究现状及发展趋势
王振宇 1, 2, 杨勤勇 1, 李振春 2, 胡光辉 1, 尹力 1, 2, 王杰 1   
  1. 1.中国石油化工股份有限公司石油物探技术研究院,江苏 南京 211103
    2.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
  • 出版日期:2014-10-20

Research Status and Development Trend of Near-Surface Velocity Modeling

Zhenyu Wang 1, 2, Qinyong Yang 1, Zhenchun Li 2, Guanghui Hu 1, Li Yin 1, 2, Jie Wang 1   

  1. 1.Sinopec Geophysical Research Institute, Nanjing 211103, China
    2.School of Geosciences, China University of Petroleum, Qingdao 266580, China
  • Online:2014-10-20 Published:2014-10-20

速度是反映地下构造和岩石物性的一个重要参数。近地表速度的精度直接影响勘探区域的地震资料静校正、速度分析以及最终成像的效果。目前常用的近地表建模方法和技术多基于高频近似的射线理论,不能满足当前近地表精细建模的需求。通过对微测井、折射波法、面波法、走时层析以及全波形反演等近地表建模技术的全面调研,总结了它们的适应性、优缺点及研究应用现状,指出联合走时层析与波形反演的技术方法在时间域分步骤、多尺度的反演策略是近地表高精度建模的有效手段和发展方向,能有效提高建模精度,适应高精度成像要求。该方法在近地表的矿产普查、工程物探、油气勘探等领域存在广泛的应用前景。

Seismic velocity is a critical factor in reflecting underground structure and lithology. The accuracy of near-surface velocity directly influences the results of static correction, velocity analysis and the final imaging in exploration areas. Near-surface modeling methods and technologies commonly used are based on the ray theory of high-frequency approximation, which barely meet the highaccuracy request in current nearsurface modeling. Through an overall investigation into nearsurface modeling technologies such as micro logging, mini refraction, surface wave method, traveltime tomography and Full Waveform Inversion (FWI), this paper summarizes their adaptability, advantages and disadvantages, research and application status, points out that by combining traveltime tomography and waveform inversion, the step-by-step and multiscale inversion strategy in the time domain is an effective means and trend of near-surface high-accuracy modeling, which can improve modeling accuracy effectively and meet the requirements of high accuracy imaging. Thus, the method has widespread application prospects in near-surface mineral prospecting, engineering geophysics and hydrocarbon exploration.

中图分类号: 

图1 复杂近地表概况
Fig 1 Complicated near surface general situation
图2 时间域波形层析最优频带选择策略 [ 58 ]
Fig 2 Strategy for choosing optimal frequency bands for time-domain wave form tomography [ 58 ]
图3 时间域多尺度波形反演结果 (a)5Hz峰值频率数据MWT结果;(b)5Hz和20Hz峰值频率数据MWT反演结果;(c)20Hz峰值频率数据SWT反演结果;(d)真实速度模型[ 58 ]
Fig 3 Time-domain multiscale waveform inversion results (a)MWT velocity tomogram obtained after inversion using 5-Hz peak-frequency data;(b)MWT velocity tomogram obtained after inversions using 5- and 20-Hz peak-frequency data; (c)SWT velocity tomogram obtained after inversion using 20-Hz peak-frequency data;(d)the true velocity model[ 58 ]
图4 墨西哥湾海洋数据反演结果 (a)走时层析反演结果;(b)MWT反演结果[ 59 ]
Fig 4 Inversion results from the marine data (a)The initial velocity model obtained from traveltime tomography;(b)The velocity tomogram obtained from waveform tomography[ 59 ]
图5 墨西哥湾海洋数据偏移结果 (a)走时层析偏移结果;(b)MWT偏移结果[ 59 ]
Fig 5 Migration images from the marine data. (a)The Kirchhoff migration image obtained using the original data and the traveltime tomogram; (b)The Kirchhoff migration image obtained using the waveform tomogram[ 59 ]
图6 偏移成像放大结果对比 (a)和b)分别是 图5 a实线框和虚线框放大结果;(c)和(d)分别是 图5 b实线框和虚线框放大结果[ 59 ]
Fig 6 Zoomed views of migration images from the marine data. Using the traveltime tomogram, the Kirchhoff migration images in(a)the solid box and(b)the dashed box are obtained. Using the waveform tomogram, the Kirchhoff migration image in(c)the solid box and(d)the dashed box are obtained[ 59 ]
图7 共成像点道集(CIGs)对比 [ 59 ] (a)走时层析结果CIGs;(b)MWT结果CIGs
Fig 7 Common image gathers (CIGs) obtained from the marine data migrated (a)traveltime tomogram; (b)waveform tomogram as the velocity model[ 59 ]
[1] Jia Yongfeng, Guo Huaming. Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science, 2013, 28(1): 51-61.
[贾永锋,郭华明.高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.]
[2] Wang Huazhong, Liu Shaoyong, Yang Qinyong,et al. Seismic exploration strategy and inmage processing in mountain areas[J].Oil Geophysical Prospecting, 2013,48(1):151-159.
[王华忠,刘少勇,杨勤勇,等.山前带地震勘探策略与成像处理方法[J].石油地球物理勘探,2013,48(1):151-159.]
[3] Ma Wei, Niu Fujun, Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11): 1185-1191.
[马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.]
[4] Qin Ning, Li Zhenchun, Sang Yunyun,et al. The research of travel time tomographic velocity modeling method on first break[J].Progressin Geophysics,2014,29(1):255-260.
[秦宁,李振春,桑运云,等.初至波走时层析速度建模方法研究[J]. 地球物理学进展,2014,29(1):255-260.]
[5] Cheng Jianyuan, Li Ning, Hou Shining,et al. Development status overview of seismic prospecting technology in loess tableland[J].Coal Geology of China,2009,21(12):72-76.
[程建远,李宁,侯世宁,等.黄土塬区地震勘探技术发展现状综述[J].中国煤炭地质,2009,21(12):72-76.]
[6] Pan Yanmei,Liu Yuzhu,Yang Kai. Preliminary study on velocity modeling for irregular surface[J].Xinjiang Petroleum Geology, 2009,30(4):523-525.
[潘艳梅,刘玉柱,杨锴.起伏地表速度建模初步研究[J].新疆石油地质,2009,30(4):523-525.]
[7] Li Minghai. Application of uphole methods in the inwestigation of near surface structure[J].Progress in Exploration Geophysics, 2008,31(5): 378-382.
[李明海.地面微测井在山地表层结构调查中的应用[J].勘探地球物理进展, 2008,31(5):378-382.]
[8] Chen Wujin, Zhang Zhilin, Zhu Yong, et al. Discussion on integrative near-surface method in Yongxin area[J]. Oil Geophysical Prospecting,2008,43(Suppl.2):70-73.
[陈吴金, 张志林, 朱勇,等. 永新地区综合表层调查方法探讨[J].石油地球物理勘探, 2008,43(增刊2):70-73.]
[9] Duan Yunqing, Pi Jinyun, Liu Bing, et al. Study on near-surface survey by 3-component(3-C)shallow refraction[J]. Oil Geophysical Prospecting,2008,43(6):652-655.
[段云卿,皮金云,刘兵,等.三分量小折射表层调查研究[J].石油地球物理勘探,2008,43(6):652-655.]
[10] Zhang Wei,He Zhengqin, Hu Gang,et al. Detection of the shallow velocity structure with surface wave prospection method[J].Progress in Geophysics, 2013,28(4):2199-2206.
[张维,何正勤,胡刚,等.用面波联合勘探技术探测浅部速度结构[J].地球物理学进展,2013,28(4):2199-2206.]
[11] Zhang Kai, Li Zhenchun. Tomographic velocity inversion method with dual-complexity[J].Progress in Geophysics,2013,28(6):3001-3006.
[张凯,李振春.双复杂条件下层析速度反演方法研究[J].地球物理学进展, 2013,28(6):3001-3006.]
[12] Bai Chaoying, Stewart Greenhalgh, Zhou Bing. 3D ray tracing using a modified shortest-path method[J].Geophysics,2007,72(4):T27-T36.
[13] Sang Yunyun, Li Zhenchun,Zhang Kai. Shortest path ray tracing based on parabolic traveltime interpolation[J]. Oil Geophysical Prospecting,2013,48(3):403-409.
[桑运云,李振春,张凯.基于抛物旅行时插值的最短路径射线追踪[J].石油地球物理勘探,2013,48(3):403-409.]
[14] Zhou H. Multiscale traveltime tomography[J].Geophysics, 2003,68(5): 1639-1649.
[15] Liu Hui, Zhou Huawei, Liu Wenge. Tomographic velocity model building of the near surface with velocity-inversion interfaces: A test using the Yilmaz model[J].Geophysics, 2010, 75(6):39-47.
[16] Taillandier C, Noble M,Chauris H,et al. First-arrival traveltime tomography based on the adjoint-state method[J]. Geophysics, 2009, 74(6): WCB1-WCB10
[17] Woodward M J. Wave-equation tomography[J].Geophysics, 1992, 57:15-26.
[18] Dahlen F A, Hung S H, Nolet G. Fréchet kernels for finite-frequency travel-times-I. Theory[J]. Geophysical Journal International,2000,141(1): 157-174.
[19] Schuster G T, Quintus-Bosz A.Wavepath eikonal traveltime inversion: Theory[J].Geophysics, 1993, 58(9): 1314-1323.
[20] Luo Y, Schuster G T. Wave-equation traveltime inversion[J].Geophysics, 1991,56(5):645-653.
[21] Vasco D W, Peterson J E, Jr Ernest L,et al. Beyond ray tomography: Wavepaths and Fresnel volumes[J].Geophysics,1995,60(6): 1790-1804.
[22] Ĉervený V, Soares J.Fresnel volume ray tracing[J].Geophysics,1992,57:902-915.
[23] He L,Zhang W, Zhang J, et al. 3D wave-ray traveltime tomography for near-surface imaging[C]//83th Annual International Meeting, SEG, Expanded Abstracts, Houston, American,2013:1 749-1753.
[24] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J].Geophysics, 1984,49(8): 1259-1266.
[25] Wang Huazhong,Wang Xiongwen,Wang Xiwen. Analysis of the basic problems of seismic wave inversion[J].Lithologic Reservoirs, 2012,24(6):1-9.
[王华忠,王雄文,王喜文.地震波反演的基本问题分析[J].岩性油气藏,2012,24(6):1-9.]
[26] Virieux J,Operto S. An overview of full-waveform inversion in exploration geophysics[J].Geophysics,2009,74(6):WCC1-WCC26.
[27] Bian Aifei,Yu Wenhui,Zhou Huawei. Progress in the frequency-domain full waveform inversion method[J].Progress in Geophysics,2010,25(3):982-993.
[卞爱飞,於文辉,周华伟.频率域全波形反演研究进展[J].地球物理学进展,2010,25(3):982-993.]
[28] Lailly P. The seismic inverse problem as a sequence of before stack migrations[C]// Conference on Inverse Scattering:Theory and Applications. Philadelphia: SIAM,1984:206-220.
[29] Bunks C, Saleck F M, Zaleski S, et al. Multiscale seismic waveform inversion[J].Geophysics, 1995, 60(5): 1457-1473.
[30] Pratt R G. Frequency-domain elastic modeling by finite differences: A tool for cross hole seismic imaging[J].Geophysics, 1990,55(5):626-632.
[31] Pratt R G. Seismic waveform inversion in the frequency domain, part I: Theory and verification in a physic scale model[J].Geophysics,1999,64(3):888-901.
[32] Plessix R E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[J].Geophysical Journal International, 2006, 167(2):495-503.
[33] Gauthier O,Virieux J, Tarantola A. Two-dimensional nonlinear inversion of seismic waveform:Mumeical results[J]. Geophysics, 1986,51(7):1387-1403.
[34] Mora P. Nonlinear two-dimensional elastic inversion of multi-offset seismic data[J].Geophysics, 1987,52(9):1211-1228.
[35] Pratt R, Sams M. Reconciliation of cross hole seismic velocities with well information in a layered sedimentary environment[J].Geophysics, 1996, 61(2):549-560.
[36] Pratt R, Shin C, Hicks G. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J].Geophysical Journal international, 1998, 133(2):341-362.
[37] Sirgue L, Barkved O I, Dellinger J, et al. Full waveform inversion: The next leap forward in imaging at Valhall[J].First Break, 2010,28(1): 65-70.
[38] Plessix R, Perkins C. Full waveform inversion of a deep water ocean bottom seismometer dataset[J]. First Break, 2010,28(1): 71-78.
[39] Hu G, Etieen V, Castellanos C, et al. Assessment of 3d acoustic isotropic full waveform inversion of wide-azimuth obc data from valhall[C]//Expanded Abstracts of 82th Annual International Meeting, SEG, Expanded Abstracts, Las Vegas, America, 2012:1-6.
[40] Shin C. Laplace-domain full-waveform inversion of seismic data lacking low-frequency information[J].Geophysics, 2012, 77(5): 199-206.
[41] Plessix R, Baeten G, Villem J. Full waveform inversion and distance separated simultaneous sweeping: A study with a land seismic data set[J].Geophysical Prospecting, 2012, 60(4):733-747.
[42] Hu G, Fang W, Jia C, et al. Full waveform inversion technology and its application[J].Geophysical Prospecting for Petroleum,2013,51(SI):90-96.
[43] Hu Guanghui, Jia Chunmei, Xia Hongrui, et al. Implementation and validation of 3D acoustic full waveform inversion[J].Geophysical Prospecting for Petroleum,2013, 52(4):417-425.
[胡光辉,贾春梅,夏洪瑞,等.3D声波全波形反演的实现及应用[J].石油物探,2013,52(4):417-425.]
[44] Yang Qinyong, Hu Guanghui, Wang Lixin. Research status and development trend of full waveform inversion[J].Geophysical Prospecting for Petroleum, 2014,53(1):78-84.
[杨勤勇,胡光辉,王立歆.全波形反演研究现状与发展趋势[J].石油物探,2014,53(1):78-84.]
[45] Sheng J, Leeds A, Buddensiek M, et al. Early arrival waveform tomography on near-surface refraction data[J].Geophysics, 2006, 71(4): U47-U57.
[46] Levander A R. Fourth-order finite-difference P-SV seismograms[J].Geophysics, 1988, 53(11):1425-1437.
[47] Berenger J. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994,114: 185-200.
[48] Chew W, Liu Q. Perfectly matched layers for elastrodynamics[J]. Journal of Computational Acoustics, 1996, 4:341-359.
[49] Zeng Y, He J Q, Liu Q. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media[J].Geophysics, 2001,66: 1258-1266.
[50] Festa G, Nielson S. PML absorbing boundaries[J]. Bulletin of the Seismological Society of America, 2003, 93(2):891-903.
[51] Zhou C, Cai W,Luo Y, et al. Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data[J].Geophysics, 1995,60(3):765-773.
[52] Zhou C, Schuster G T, Hassanzadeh S, et al. Elastic wave-equation traveltime and waveform inversion of crosshole seismic data[J].Geophysics, 1997, 62(3): 853-868.
[53] Causse E, Mittet R, Ursin B. Preconditioning for full-waveform inversion in viscoacoustic media[J].Geophysics, 1999,64(2): 130-145.
[54] Nocedal J, Wright S J. Numerical Optimization[M].New York: Springer-Verlag, 1999.
[55] Nemeth T, Normark E, Qin F. Dynamic smoothing in crosswell traveltime tomography[J].Geophysics, 1997, 62(1): 168-176.
[56] Hanafy S M,Yu H. Early arrival waveform inversion of shallow seismic land data[C]//83th Annual International Meeting, SEG, Expanded Abstracts, Houston, American, 2013:1 738-1742.
[57] Sirgue L, Pratt R G. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies[J].Geophysics,2004,69(1): 231-248.
[58] Boonyasiriwat C, Valasek P, Routh P, et al. An efficient multiscale method for time-domain waveform tomography[J]. Geophysics, 2009, 74(6): WCC59-WCC68.
[59] Boonyasiriwat C, Schuster G T, Valasek P, et al. Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows[J].Geophysics, 2010, 75(6): R129-R136.
[60] Boonyasiriwat C, Valasek P, Routh P, et al. Application of multiscale waveform tomography for high-resolution velocity estimation in complex geologic environments: Canadian Foothills synthetic data example[J].The Leading Edge, 2009, 28(4): 454-456.
[61] Rabine L R, Gold B. Theory and Application of Digital Signal Processing[M]. New Delhi: Prentice-Hall, 1975.
[62] Oldenburg D W, Levy S, Whittall K P. Wavelet estimation anddeconvolution[J]. Geophysics, 1981, 46(11):1528-1542.
[63] Lazear G D. Mixed-phase wavelet estimation using fourth-order cumulants[J].Geophysics, 1993, 58(7): 1042-1051.
[64] Walden A T, White R E. Seismic wavelet estimation: A frequency domain solution to a geophysical noisy input-output problem[J].IEEE Transactionson Geoscience and Remote Sensing, 1998, 36:287-297.
[65] Behura J. Virtual real source[C]//77th Annual International Meeting, SEG, Expanded Abstracts, San Antonio, America, 2007:2 693-2696.
[66] Maresh J, White R S, Hobbs R W, et al. Seismic attenuation of Atlantic margin basalts: Observations and modeling[J].Geophysics, 2006, 71(6): B211-B221.
[67] Wang Y. Inverse Q-filter for seismic resolution enhancement[J].Geophysics, 2006, 71,(3): V51-V60.
[68] Zou Z, Ramos-Martínez J, Kelly S, et al. Refraction full-waveform inversion in a shallow water environment[C]//76th Conference and Exhibition, EAGE, Extended Abstracts, Amesterdam, Holland, 2014.
[69] McNeely J, Keho T, Tonellot T, et al. 3D acoustic waveform inversion of land data: A case study from Saudi Arabia[C]//82th Annual International Meeting, SEG, Expanded Abstracts, Las Vegas, America, 2012: 1-5.
[70] Dong Liangguo, Chi Benxin, Tao Jixia, et al. Objective function behavior in acoustic full-waveform inversion[J].Chinese Journal Geophysics, 2013,56(10):3445-3460.
[董良国,迟本鑫,陶纪霞,等.全波形反演目标函数性态[J].地球物理学报,2013,56(10):3445-3460.]
[71] Shen X. Near-surface velocity estimation by weighted early-arrival waveform inversion[C]//80th Annual International Meeting, SEG, Expanded Abstracts, Denver, America, 2010: 1 975-1979.
[72] Speziali M, Re S, Clementi M, et al. Near-surface characterization in using simultaneous joint inversion of refracted and surface waves—A case study[C]//76th Conference and Exhibition, EAGE, Extended Abstracts, Amesterdam, America, 2014.
[73] Colombo D, Rovetta D, Sandoval C E, et al. 3D seismic-gravity simultaneous joint inversion for near surface velocity estimation[C]//75th Conference and Exhibition, EAGE, Extended Abstracts, 2013.
[74] Gao Y, Chen X, Hu H, et al. Early electromagnetic waves from earthquake rupturing: II. Validation and numerical experiments[J]. Geophysical Journal International, 2013, 192:1308-1323.
[75] Liu Xinming, Liu Shucai,Yi Hongchun,et al. The simulation research of electromagnetic wave attenuation coefficient tomography in media of complicated fault structures[J].Advances in Earth Science, 2013, 28(3): 391-397.
[刘鑫明,刘树才,易洪春,等.复杂断层构造电磁波衰减系数层析成像模拟研究[J].地球科学进展, 2013, 28(3): 391-397.
[1] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[3] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[4] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[5] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.
[6] 覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展 *[J]. 地球科学进展, 2014, 29(1): 30-41.
[7] 欧尔峰,梁庆国,鲁得文,孙 文. 天水第三系泥岩地球化学特性研究[J]. 地球科学进展, 2013, 28(3): 398-406.
[8] 刘雅妮,辛晓洲,柳钦火,周春艳. 基于多尺度遥感数据估算地表通量的方法及其验证分析[J]. 地球科学进展, 2010, 25(11): 1261-1272.
[9] 王天送. 社会代谢多尺度综合评估(MSIASM)的基本理论与实践[J]. 地球科学进展, 2008, 23(1): 63-70.
[10] 张永民,赵士洞. 多尺度评估的贡献及经验教训[J]. 地球科学进展, 2007, 22(8): 851-856.
[11] 叶淑君;吴吉春;薛禹群. 多尺度有限单元法求解非均质多孔介质中的三维地下水流问题[J]. 地球科学进展, 2004, 19(3): 437-442.
[12] 张云霞,李晓兵,陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述[J]. 地球科学进展, 2003, 18(1): 85-093.
[13] 史培军,潘耀忠,陈云浩,李晓兵,景贵飞,李京,鲜祖康,张淑英. 多尺度生态资产遥感综合测量的技术体系[J]. 地球科学进展, 2002, 17(2): 169-173.
[14] 李 军,周成虎. 地球空间数据集成多尺度问题基础研究[J]. 地球科学进展, 2000, 15(1): 48-52.
阅读次数
全文


摘要