地球科学进展 ›› 2011, Vol. 26 ›› Issue (9): 971 -979. doi: 10.11867/j.issn.1001-8166.2011.09.0971

研究论文 上一篇    下一篇

环境与灾害监测预报小卫星CCD数据质量评价
刘睿 1,2,孙九林 2,王卷乐 2,廖秀英 2   
  1. 1.重庆师范大学地理科学学院,重庆 400047;
    2.资源与环境信息系统国家重点实验室,中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2010-12-11 修回日期:2011-07-31 出版日期:2011-09-10
  • 通讯作者: 刘睿
  • 基金资助:

    国家自然科学基金项目“基于ISO元数据扩展模型的土地覆盖分类体系构建及语义转换”(编号:40801180);科技基础性工作专项项目“中国北方及其毗邻地区综合科学考察”(编号:SB2007FY442);环境保护部公益性行业专项“面向我国环境管理的环境变化信息集成与服务系统”(编号:201109075)资助.

Data Quality Evaluation of Chinese HJ CCD Sensor

Liu Rui 1,2, Sun Jiulin 2, Wang Juanle 2, Liao Xiuying 2   

  1. 1. College of Geographical Science, Chongqing Normal University, Chongqing 400047, China;
    2. State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2010-12-11 Revised:2011-07-31 Online:2011-09-10 Published:2011-09-10

中国环境与灾害监测预报小卫星星座双星4部CCD传感器具备大范围、全天时环境与灾害监测等方面的能力,在空间覆盖与重复观测频率方面有很大的优势。结合美国陆地卫星TM数据,从几何精度、辐射质量2个方面定量分析了该卫星CCD传感器的数据质量。结果表明:①环境减灾卫星CCD数据无波段错位现象,有极小的畸变与扭曲(0.05%),然而存在较大的整体几何误差。②CCD数据的整体辐射范围、信噪比与TM数据相比并无明显区别,但其清晰度的不足导致在地物识别、特征提取与图像量测方面的应用存在着一定的限制。③CCD数据的信息量较为丰富,4、3、2波段的标准假彩色合成包是波段合成方案中的最佳波段组合。CCD数据的功率谱保证了其具有丰富的纹理特征,对于诸如土地利用/覆被变化等方面的研究,其信息量与纹理特征能够保证其应用精度。④CCD传感器4个波段间,近红外与红波段表现最好,与TM传感器相应波段相比质量相当,其次为绿波段与蓝波段。

The Chinese environmental mitigation HJ satellite CCD sensors are capable of large area and all-time monitoring, and have a great advantage in coverage and frequency of repeated observations. However, as a relative newly remote sensing sensor, it is essential to evaluate the data quality for further applications. Based on the introduction of HJ CCD sensor and combined with LandSat TM data, the geometry accuracy and radiance quality of HJ CCD data was quantitative evaluated in this paper. The results showed that: ①There is no deviation between the 4 bands of HJ CCD, and compared with TM, very small geometric distortion is detected (0.05%). However, there′s large geometric error in both X and Y direction. ②There  is no obvious difference in radiation range and signal to noise ratio between the two sensors, but the image sharpness of CCD data can only achieve about half of TM, which leads to application limitation for object recognition and feature extraction, etc. ③The CCD data is rich in amount of information, and standard false colour composition of band 4, 3, 2 is the best band combination choice. Meanwhile, the power spectral of CCD data guaranteed the abundant texture feature, which will ensure the application accuracy in studies such as classification. ④Near infrared and red band showed the best quality between the CCD bands, and followed by green and blue band.

中图分类号: 

[1] Zhao Shuhe, Feng Xuezhi, Zhao Rui. Evaluation on data quality and geometric correction of China-Brazil resources satellite No.1 data in Nanjing area[J]. Remote Sensing Technology and Application, 2000, 15(3): 170-174.[赵书河, 冯学智, 赵锐. 中巴资源一号卫星南京幅数据质量与几何纠正评价[J]. 遥感技术与应用, 2000, 15(3): 170-174.]
[2] Wang Qinjun, Tian Qingjiu. Quality evaluation of LISS3 image from IRS-P6 satellite[J]. Geography and Geo-Information Science, 2007, 23(3): 11-14.[王钦军, 田庆久. IRS-P6卫星LISS3图像数据质量评价[J]. 地理与地理信息科学, 2007, 23(3): 11-14.]
[3] Yang Zhongdong, Gu Songyan, Qiu Hong, et al. CBERS-1′s CCD image quality evaluating and cross calibrating study[J]. Journal of Remote Sensing, 2004, 8(2): 113-120.[杨忠东, 谷松岩, 邱红, 等. 中巴地球资源一号卫星 CCD 图像质量评价和交叉定标研究[J]. 遥感学报, 2004, 8(2): 113-120.]
[4] Thomson G. Evaluation of Russian Arkon-2 Earth observation satellite[J]. The Imaging Science Journal, 2005, 53(3): 163-173.
[5] Jia Fujuan, Wu Yanlin, Huang Ying, et al. Design and on-orbit application of CCD camera on HJ-1A/1B Saterllites[J]. Spacecraft Engneering, 2009(6): 37-42. [贾福娟, 吴雁林, 黄颖, 等. 环境减灾-1A、1B卫星宽覆盖多光谱CCD相机技术[J]. 航天器工程, 2009(6): 37-42.]
[6] Zhang Zengxiang, Wang Xiao, Wang Changyao, et al. National land cover mapping by remote sensing under the  control of interpreted data[J]. Journal of Geo-Information Science, 2009, 11(2): 216-224.[张增祥, 汪潇, 王长耀, 等. 基于框架数据控制的全国土地覆盖遥感制图研究[J]. 地球信息科学学报, 2009, 11(2): 216-224.]
[7] Gutman G, Byrnes R, Masek J, et al. Towards monitoring land-cover and land-use changes at a global scale: The global land survey 2005[J]. Photog Rammetric Engineering and Remote Semsomg, 2008, 74(1): 6-10.
[8] Franks S, Masek J, Headley R, et al. Large Area Scene Selection Interface(LASSI) methodology of selecting landsat imagery for the global land survey 2005[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(11): 1 287-1 296.
[9] Wang Xinmin, Zhang Lei. Analysis of geometric fidelity of systematically corrected Landsat-5 TM image data[J]. Remote Sensing of Environment China, 1989, 4(4): 293-299.[王新民,章蕾. 陆地卫星五号TM图像系统纠正产品的几何精度分析[J]. 环境遥感, 1989, 4(4): 293-299.]
[10] Wang Xinmin, Shao Beien, Dai Zixin, et al. An accuracy comparison between the geodetically corrected TM images produced by our landsat ground station and U.S. NOAA[J]. Remote Sensing of Environment China, 1987, 2(1): 73-79.[王新民, 邵贝恩, 戴自忻,等. 我国陆地卫星地面站与美国NOAA的大地校正TM图像产品的精度比较[J]. 环境遥感, 1987, 2(1): 73-79.]
[11] Zhang Xia, Zhang Bing, Zhao Yongchao, et al. Image quality assessment for the infrared Multi-Spectral scanner of the Chinese-Brazil Earth resources satellite[J]. Journal of Image and Graphics, 2002, 7(A)(6): 581-586.[张霞, 张兵, 赵永超, 等. 中巴地球资源一号卫星多光谱扫描图象质量评价[J]. 中国图象图形学报, 2002, 7(A)(6): 581-586.]
[12] Liu Jiangui, Zheng Lanfen, Tong Qingxi. Estimation of signal to noise ratio of remote sensing images[J]. Journal of Basic Science and Engineering, 1999, 7(4): 360-365.[刘建贵, 郑兰芬,童庆禧. 遥感图象信噪比的估算[J]. 应用基础与工程科学学报, 1999, 7(4): 360-365.]
[13] Wang Hongnan, Zhong Wen, Wang Jing, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics, 2004, 9(7): 829-831.[王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004, (7):829-931.]
[14] Cheng Jicheng, Guo Huadong, Shi Wenzhong. Uncertainty of Remote Sensing Data[M]. Beijing: Science Press,2004.[承继成, 郭华东, 史文中. 遥感数据的不确定性问题[M]. 北京: 科学出版社,2004.]
[15] Lin Zongjian, Zhang Yonghong. Measurement of information and uncertainty of remote sensing and GIS data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 569-572.[林宗坚, 张永红. 遥感与地理信息系统数据的信息量及不确定性[J]. 武汉大学学报: 信息科学版, 2006, 31(7): 569-572.]
[16] Balboa R,Grzywacz N. Power spectra and distribution of contrasts of natural images from different habitats[J]. Vision Research, 2003, 43(24): 2 527-2 537.
[17] Chander G, Markham B L,Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
[18] Zhu Yunqiang, Sun Jiulin, Song Jia, et al. E-Geoscience research and practice—A case show of north eastern Asia joint scientific exploration and cooperative research platform[J]. Advances in Earth Science, 2011, 26(1): 66-74.[诸云强, 孙九林, 宋佳, 等. 地学e-Science研究与实践——以东北亚联合科学考察与合作研究平台构建为例[J]. 地球科学进展, 2011, 26(1): 66-74.]

[1] 康国发,吴小平,胡家富. 1600—2000年地球主磁场的全球变化[J]. 地球科学进展, 2002, 17(3): 339-343.
阅读次数
全文


摘要