地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 839 -849. doi: 10.11867/j.issn.1001-8166.2017.08.0839

上一篇    下一篇

基于勘探工程位置建模方法和储量估算
唐子剑 1, 2( ), 康明 1, 李军 2   
  1. 1.长安大学 地球科学与资源学院, 陕西 西安 710054
    2.河南省地矿局第五地质勘查院, 河南 郑州 450000
  • 收稿日期:2017-02-28 修回日期:2017-06-20 出版日期:2017-10-20
  • 基金资助:
    河南省国土资源厅地勘基金项目“登封—新密铝土矿普查”(编号:豫国土资发[2014]3号)资助

Exploration Project Location Methods Base on 3D Geological Model and Resource Reserves Estimation

Zijian Tang 1, 2( ), Ming Kang 1, Jun Li 2   

  1. 1.School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, China
    2. No.5 Institute of GeoExploration of Henan, Zhengzhou 450000, China
  • Received:2017-02-28 Revised:2017-06-20 Online:2017-10-20 Published:2017-08-20
  • About author:

    First author:Tang Zijian(1992-), male, Zhengzhou City, He’nan Province, Assistant Engineer. Research areas include mineral prospecting and exploration.E-mail:tangzj261@163.com

  • Supported by:
    Project supported by the He’nan Provincial Department of Geological Exploration Fund Project “Reconnaissance geological survey of Dengfeng-Xinmi region”(No.[2014]No.3)

三维地质模型的精细描述是相关三维成矿预测和储量估算的前提和保证,更有利于发挥计算机三维可视化技术和地质统计学等在工程建设领域的作用。以河南省某铝土矿床为例,针对三维地质建模过程中存在的难点问题,在传统建模方法基础上提出了一种基于勘探工程实际空间位置建模方法,在野外勘探工程密度较小的情况下也能准确圈定矿体。首先以地质勘查资料为基础,对建模的过程进行了阐述,构建了三维矿体模型、三维地层模型,然后采用普通克里格法和距离幂次反比法估算了资源储量,并对矿体的品位分布和储量类别进行了表达,最后使用3种不同的验证方法进行了精度检验。实现了资源量类别、资源量品位区间、资源量估算动态可视化管理。通过对该矿区的矿体建模和资源量计算,验证了方法的有效性,对于同类型矿床有一定的借鉴意义。

More attentions have been paid to 3D geological modeling by earth science experts and scholars, which gradually becomes a research hotspot in the fields of mine geology, oil and gas exploration, etc. The detailed description of the 3D geological model is the prerequisite and guarantee for metallogenic prediction and reserve estimation,which is more favorable to play an important role in 3D visualization technology and geostatistics. A bauxite deposit in Henan Province was provided as an example and a series of difficult problems were dealt with in the 3D geological modeling. First of all, we used multiple vertical profiles to build ore body contour line. Based on the geological exploration data, the modeling process was discussed. The geometric database raw data format was revised. The auxiliary coil was used to build 3D model. Then, terrain surface model, the 3D ore body model, 3D stratum model and 3D structure model were successfully established. Based on the accurate 3D models, the L1 reserve was estimated by the Distance Power Inverse Ratio method and Ordinary Kriging. Ore bodie distribution and the reserves category were expressed. Finally, three different verification methods were used to verify the accuracy. Based on the traditional modeling method, a method based on the actual spatial location modeling of exploration engineering was improved, which can be modeled by any exploration project location. The accuracy and reliability of modeling were improved. It achieved the goals of the reserves category, reserve grade interval and reserve estimation dynamic visualization. The errors were within the controllable range.

中图分类号: 

图1 登封—新密地区地质简图(据河南省五勘院修编,2015年)
1.全新统;2.上更新统;3.中更新统;4.新近系洛阳组;5.下三叠统圈门组;6.上二叠统石千峰组;7 .上二叠统上石盒子组上段; 8.上二叠统上石盒子组下段;9.二叠系下统;10.石炭系上统;11.中奥陶统马家沟组;12.上寒武统凤山组;13.上寒武统长山组;14.上统崮山组;15.上寒武统并层;16.中寒武统张夏组;17.中寒武统徐庄组;18.中寒武统毛庄组;19.寒武系中统并层;20.下寒武统辛集组;21.震旦系中统马鞍山组;22.震旦系花峪组;23.震旦系庙坡组;24.L1矿区范围
Fig.1 Geological sketch map of the Dengfeng-Xinmi area(modified from No.5 Institute of Geo-Exploration of He’nan, 2015)
1.Holocene; 2.Pleistocene; 3.Middle Pleistocene; 4.Neogene Luoyang Formation; 5.Lower Triassic Quan-men Formation; 6.Permian Shiqianfeng ormation; 7.Permian Upper Shihezi Formation; 8.Permian Lower Shihezi Formation; 9.Lower Permian; 10.Upper Carboniferous; 11.Ordovician ajiagou Formation; 12.Cambrian Fengshan Formation; 13.Cambrian Changshan Formation; 14.Cambrian Gushan Formation; 15.Upper Cambrian;16.Cambrian Zhangxia Formation; 17.Cambrian Xuzhuang Formation; 18 Cambrian Maozhuang Formation; 19.Middle Cambrian;20.Cambrian Xinji Formation; 21.Sinian Ma-anshan Formation; 22.Sinian Huayu Formation; 23.Sinian Miaopo Formation; 24.L1 mining area
图2 L1矿区地质简图
Fig.2 Geological sketch map of the mining area
图3 相邻勘探剖面上的矿体形态特征
红色:铝土矿;黄色:硫铁矿
Fig.3 Compassion of orebody features on the exploration profiles
Red: Bauxite; Yellow: Pyrite
表1 地质数据库孔口表
Table 1 Collar table of geological database
表2 地质数据库测斜表
Table 2 Survey table of geological database
表3 地质数据库岩性表
Table 3 Stratum table of geological database
表4 地质数据库样品表
Table 4 Sample table of geological database
图4 基于勘探工程实际位置建模流程图
Fig.4 Chart of 3D modeling process based on the actual location of exploration engineering
图5 矿体轮廊与控制线
Fig.5 Ore body boundary line and control line
图6 三维矿体模型图
Fig.6 Three-dimensional orebody model
图7 三维地层模型图
1.上二叠统石千峰组;2.上二叠统石盒子组;3.下二叠统山西组;4.上石炭统太原组;5.中奥陶统马家沟组;6.断层面;7.钻孔位置
Fig.7 Three-dimensional stratum model
1.Permian Shifeng Formation; 2.Permian Shihezi Formation; 3.Permian Shanxi Formation; 4.Carboniferous Taiyuan Formation; 5.Ordovician Majiagou Formation; 6.Fault model;7.Drill location
图8 储量估算与精度检验流程图
Fig.8 Process chart of reserve estimation and accuracy verification
图9 铝矿石样品统计组合后品位直方图
Fig.9 Histogram of ore grade based on statistical combinations of Aluminum samples
图10 不同储量估算方法的矿体品位分布图
图例为样品中铝含量;(a)普通克里格法;(b)距离幂次反比法
Fig.10 The block model of different reserve estimation method
The content of aluminum; (a)Ordinary kriging; (b)Inverse Distance Squared
表5 变异函数模型参数表
Table 5 The model of variation function parameter table
表6 椭球体参数表
Table 6 Ellipsoid parameter table
表7 资源储量类别
Table7 Resource category table
图11 不同估算方法的铝品位—资源量对比
mfe.平均品位—矿石资源量;1.距离幂次反比法;2.普通克里格法; 3.距离幂次反比法累计;4.普通克里格法累计
Fig.11 Resources curve of aluminum mfe grade-tonnage
mfe.Average grade-the ore reserves;1.Ordinary kriging;2.Inverse Distance Squared;3.IDS total reserves;4.Kriging total reserves
表8 资源储量估算结果对比表
Table 8 Table of estimated resources
表9 资源储量结果对比表
Table 9 Comparison of amount of metal ore analysis
表10 储量估算结果分析表
Table 10 Resource estimation result table
[1] Fan Zhongping, Ren Tao, Wang Ruiyan, et al.Estinating ore-body resources and building the Three-Dinensional Model of deposits based on Surpac software: A case of the Xiajiadian gold-vanadium deposit,Shanyang County, Shaanxi Province[J]. Geology and Prospecting, 2010,46(5):977-984.
[樊忠平,任涛,王瑞延,等.基于Surpac软件的矿床模型构建及矿体资源量估算——以陕西山阳夏家店金钒矿床为例[J]. 地质与勘探, 2010, 46(5):977-984.]
[2] Miao Jinxiang, Song Yaowu, Li Zhongming, et al.Workflow and comparsion of Three-Dimensional Geological Modeling using different software for the Yushan Bauxite Deposit in Henan Province[J]. Geology and Prospecting, 2012, 48(3):502-507.
[苗晋详,宋要武,李中明.河南郁山铝土矿三维地质建模软件工作流程与对比研究[J].地质与勘探, 2012,48(3):502-507.]
[3] Chou Dongdong, Jiao Jiangang, Jiang Jianchao, et al.3D Geologic Modeling of Songshugou Chromite Deposit in North Qinling and its prospecting significance[J]. Journal of Earth Sciences and Environment, 2014, 36(1):210-217.
[仇东东,焦建刚,姜建超,等. 北秦岭松树沟铬铁矿床三维地质建模及其找矿意义[J]. 地球科学与环境学报,2014, 36(1):210-217.]
[4] Wu Bingsheng.3D Geological Modeling and Resource Estimates of A Copper Deposit, Fujian[D]. Beijing: China University of Geosciences(Beijing),2014.
[吴炳生. 福建某铜矿床三维地质建模及资源量估算[D]. 北京:中国地质大学(北京), 2014.]
[5] Martin Izard A, Arias D, Arias M, et al.A new 3D Geological Model and interpretation of structural evolution of the world-class Rio Tinto VMS Deposit, Iberian Pyrite Belt (Spain)[J].Ore Geology Reviews, 2015, 71:457-476.
[6] Chen Jianping,Yu Pingping,Shi Rui, et al.Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies[J]. Earth Science Frontiers, 2014, 21(5):211-220.
[陈建平,于萍萍,史蕊,等. 区域隐伏矿体三维定量预测评价方法研究[J].地学前缘,2014,21(5):211-220.]
[7] Chen Jianping,Yu Miao,Yu Pingping, et al.Method and practice of 3D geological modeling at key metallogenic belt with large and medium scale[J].Acta Geologica Sinica, 2014, 88(6):1 187-1 195.
[陈建平,于淼,于萍萍,等. 重点成矿带大中比例尺三维地质建模方法与实践[J]. 地质学报, 2014, 88(6):1 187-1 195.]
[8] Flemming Jørgensen, Anne Sophie Høyer, Peter B E, et al.Combining 3D Geological Modelling techniques to address variations in geology, data type and density—An example from Southern Denmark[J]. Computers & Geosciences, 2015, 81:53-63.
[9] Wu Zhichun, Guo Fusheng, Jiang Yongbiao, et al.Methods of Three-Dimensional Geological Modeling based on geological sections[J]. Geology and Prospecting, 2016,52(2):363-375.
[吴志春,郭福生,姜勇彪,等. 基于地质剖面构建三维地质模型的方法研究[J].地质与勘探, 2016,52(2):363-375.]
[10] Xiang Jie, Chen Jianping, Hu Bin, et al.3D metallogenic prediction based on 3D geological-geophysical model: A case study in Tongling mineral district of Anhui[J]. Advances in Earth Science, 2016, 31(6): 603-614.
[向杰,陈建平,胡彬,等.基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J].地球科学进展,2016,31(6):603-614.]
[11] Zhao Zengyu, Pan Mao, Tian Tian, et al.Implementation of the section method in the reserve estimation system for solid mineral resouraces[J]. Geology and Exploration, 2010, 46(3):547-552.
[赵增玉,潘懋,田甜,等.固体矿产资源储量估算系统中垂直断面法的实现[J].地质与勘探,2010,46(3):547-552.]
[12] Chen Guoxu,Zhang Xialin,Tian Yiping, et al.Traditional mineral resource visualized dynamic estimation and its application in 3D geological space[J].Journal of Chongqing University, 2012, 35(7):119-126.
[陈国旭,张夏林,田宜平,等.三维空间传统方法资源储量可视化动态估算及应用[J].重庆大学学报, 2012,35(7):119-126.]
[13] Li Xiaohui,Yuan Feng,Zhang Mingming, et al.Research and implementation of section method in reserve estination based on Surpac[J].Journal of Jilin University(Earth Science Edition), 2015, 45(1):156-165.
[李晓辉,袁峰,张明明,等.基于Surpac的垂直断面资源储量估算方法研究与实现[J]. 吉林大学学报:地球科学版, 2015,45(1):156-165.]
[14] Li Zhanglin,Zhang Xialin.Designing and realization of mineral resources reserve calculation module using inverse distance square method[J].Geology and Exploration, 2007,43(6):92-97.
[李章林,张夏林. 距离平方反比法矿产资源储量计算模块设计与实现[J].地质与勘探,2007,43(6):92-97.]
[15] Li Zhanglin,Zhang Xialin, Liu Gang, et al.Automatically optimizating the participant samples by inverse distance weighting method[J].Geological Science and Technology Information, 2014, 33(6):209-212.
[李章林,张夏林,刘刚,等.距离幂次反比法参估样品数据的自动优化[J] . 地质科技情报,2014,33(6):209-212.]
[16] Wang Jionghui,Li Yi,Huang Dongmei, et al.Reserves estimation of the Nihe iron deposit in Anhui based on ordinary kriging[J].Geology and Exploration, 2013. 49(6):1 108-1 113.
[王炯辉,李毅,黄冬梅,等.基于普通克里格法的泥河铁矿床资源储量估算研究[J]. 地质与勘探,2013,49(6):1 108-1 113.]
[17] Zhang Mingming,Li Xiaohui,Zhou Taofa,et al.Reserves dynamic estimation of the Nihe deposit based on three dimensional mineralized domain model[J].Geological Review, 2013, 59(1):122-128.
[张明明,李晓辉,周涛发,等.基于三维矿化域模型的泥河铁矿床动态储量估算[J].地质论评,2013,59(1):122-128.]
[18] Cong Yuan, Zhao Pengda, Chen Jianping, et al.Grade Tonnage Model of Bauxite Deposits in China[J]. Journal of Jilin University(Earth Science Edition), 2009,39(6):1 042-1 048.
[从源,赵鹏大,陈建平,等.中国铝土矿床品位吨位模型[J].吉林大学学报:地球科学版,2009,39(6):1 042-1 048.]
[19] Wang Qingfei, Deng Jun, Liu Xuefei, et al.Grade Tonnage Model of Bauxite Deposits in China[J].Geology and Exploration, 2012,48(3):430-448.
[王庆飞,邓军,刘学飞,等. 铝土矿地质与成因研究进展[J].地质与勘探,2012,48(3):430-448.]
[20] Liu Xuefei.Material Composition and Ore Forming Process of Bauxite (Clay) Deposits in Western Henan, China[D]. Beijing: China University of Geoscience(Beijing),2011.
[刘学飞. 豫西铝(粘)土矿物质组成与成矿作用[D].北京:中国地质大学(北京), 2011.]
[21] Wang Zhangang, Qu Honggang, Wu Zixing,et al.Formal representation of 3D structural geological models[J].Computers & Geosciences, 2016,90:10-23.
[22] Shao Ke, Chen Jianping, Ren Mengyi.Evaluation methodology and indicator system of polymetallic sulfide mineral resources in the Indian Ocean[J].Advances in Earth Science,2015,30(7):812-822.
[邵珂, 陈建平,任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展,2015,30(7):812-822.]
[23] Xiao Keyan,Li Nan,Sun Li,et al.Large scale 3D mineral prediction methods and channels based on 3D information technology[J].Journal of Geology, 2012, 36(3):229-236.
[肖克炎,李楠,孙莉,等. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊,2012,36(3):229-236.]
[24] GEMCOM International Mining Software Company. Surpac User Manual[M].Beijing:GEMCOM International Mining Software Company, 2008.
[GEMCOM国际矿业软件公司. Surpac用户手册[M].北京:GEMCOM国际矿业公司,2008.]
[25] DZ/T0202-2002 Specifications for Bauxite, Magnesium Smelting and Magnesite Exploration[S].Beijing:Ministry of Land and Resources of the People’s Republic of China, 2002.
[DZ/T0202-2002铝土矿、冶镁菱镁矿地质勘查规范[S].北京:中国人民共和国国土资源部,2002.]
[26] Lei Zeheng,Qiao Yusheng,Xu Yiming.A discussion on mineral resource estimates of categories 333 and 334—A case study of Bailashui tin Deposit in Hunan[J].Geology and Prospecting, 2009, 45(4):402-408.
[雷泽恒,乔玉生,许以明. 对333、334资源量估算的讨论——以湖南白蜡水锡矿床为例[J]. 地质与勘探,2009,45(4):402-408.]
[27] Ministry of Land and Resources. GB/T 139082002 General Requinements for Solid Mineral Exploration[S].Beijing:China Standard Press, 2002.
[国土资源部储量司. GB/T 13908-2002固体矿产地质勘查规范总则[S].北京:中国标准出版社, 2002.]
[28] Zhang Qizuan,Yang Jiangong.Common questions about estimation of solid mineral resources reserves[J].Geology and Exploration, 2008,44(4):74-78.
[张起钻,杨建功. 固体矿产资源储量估算应注意的问题[J]. 地质与勘探,2008,44(4):74-78.]
[1] 侯征, 王天意, 于长春, 熊盛青, 邸龙. 基于航磁数据的三维地质建模研究[J]. 地球科学进展, 2018, 33(3): 257-269.
阅读次数
全文


摘要