地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 347 -356. doi: 10.11867/j.issn.1001-8166.2016.04.0347.

上一篇    下一篇

微生物—矿物间半导体介导电子传递机制研究进展
王莹( ), 刘同旭 *( ), 李芳柏   
  1. 广东省生态环境与土壤研究所,广东 广州 510650
  • 收稿日期:2016-01-30 修回日期:2016-03-10 出版日期:2016-04-20
  • 通讯作者: 刘同旭 E-mail:yingwang@soil.gd.cn;txliu@soil.gd.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“土壤化学”(编号:41522105)资助

Advances in the Semiconductor-Mediated Electron Transfer Mechanism at Microbe-Mineral Interface

Ying Wang( ), Tongxu Liu *( ), Fangbai Li   

  1. Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650,China
  • Received:2016-01-30 Revised:2016-03-10 Online:2016-04-20 Published:2016-04-10
  • Contact: Tongxu Liu E-mail:yingwang@soil.gd.cn;txliu@soil.gd.cn
  • About author:

    First author:Wang Ying(1987-), female, Xinxiang City, He’nan Province, Researching trainee. Research areas include microbe-mineral interaction.E-mail:yingwang@soil.gd.cn

    Corresponding author:Liu Tongxu(1980-), male, Qingdao City, Shandong Province, Professor. Research areas include microbe-mineral interaction.E-mail:txliu@soil.gd.cn

  • Supported by:
    Project supported by the National Natural Science Foundation for Outstanding Young Scholars “Soil Chemistry”(No.41522105)

矿物与微生物相互作用是地球表层系统中重要的生物地球化学过程,是联系不同圈层物质与能量交换的重要纽带,深刻地影响着一系列重要的地表过程, 包括次生矿物的形成与演化、养分循环与污染物环境行为。在微生物—矿物的研究中,以往主要关注微生物的胞外电子传递和微生物介导的矿物溶解、沉淀、矿化等过程。由于矿物本身具有半导体性质,其在微生物胞外电子传递过程中扮演特殊的角色,这也为近期备受关注的微生物—矿物相互作用研究提供了一个崭新的视角。半导体矿物具有独特的能级结构和氧化还原性质,导致微生物—半导体矿物的相互作用机制差别很大。从热力学驱动和光能驱动2个方面分别阐述微生物—矿物间半导体导电机制的最新研究进展,并深入揭示其界面电子转移的机理。最后展望了微生物—半导体矿物相互作用的未来发展趋势。

The interaction between minerals and microbes is an important biogeochemical process in the earth surface system, which links the transformation of substances and energy exchange in different earth spheres, and also affects a series of important earth surface processes, including the formation and evolution of secondary minerals, nutrient cycling and environmental behaviors of pollutants. The previous studies on microbe-mineral interaction focused on the extracellular electron transfer, and the microbe-mediated dissolution, precipitation, mineralization of minerals. Because of semiconductor properties of the mineral, it plays a special role in the process of microbial extracellular electron transfer, which can also help to understand the mutual interaction between microbe and mineral from a new angle of view. The unique energy level structures and redox properties of semiconducting mineral lead to a great difference in the mechanism of microbe and mineral interaction. The latest research progresses in the mechanism of microbe-mineral interaction mediated by semiconducting mineral were reviewed from two aspects: driven by thermodynamics and light energy. Finally, the future development trends of the interaction between microbes and semiconductor minerals were prospected.

中图分类号: 

图1 热力学驱动下,微生物—半导体矿物间的导带介导电子传递途径
(a)矿物还原溶解过程;(b)微生物产电过程;(c)污染物还原过程;(d)微生物种间电子传递过程
Fig.1 Under the thermodynamic driving force, the conduction band-mediated electron transfer pathway between microbes and semiconducting minerals
(a) Reductive dissolution process of minerals; (b) Microbial electricity generation process; (c) Pollutant reduction process; (d) Microbial interspecies electron transfer process
图2 光驱动下,微生物—半导体矿物间的导带介导电子传递途径
(a)光合微生物—矿物间导带介导电子传递机制;(b)非光合微生物—矿物的电子跃迁与传递机制
Fig.2 Under the light driving force, the conduction band-mediated electron transfer pathway between microbes and semiconducting minerals
(a) Mechanism of electron transfer mediated by the conduction band between photosynthetic microbes and minerals; (b) Mechanism of electron transition and transfer between nonphotosynthetic microbes and minerals
[1] Fredrickson J K, Zachara J M.Electron transfer at the microbe-mineral interface: A grand challenge in biogeochemistry[J].Geobiology,2008, 6(3): 245-253.
[2] Melton E D, Swanner E D, Behrens S, et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J].Nature Reviews Microbiology,2014, 12(12): 797-808.
[3] Borch T, Kretzschmar R, Kappler A, et al.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science & Technology,2009, 44(1): 15-23.
[4] Chen M, Liu C, Li X, et al.Iron reduction coupled to reductive dechlorination in red soil: A review[J].Soil Science,2014, 179(10/11): 457-467.
[5] Wu Jinshui, Ge Tida, Zhu Zhenke.Discussion on the key microbial process of carbon cycle and stoichiometric regulation mechanisms in paddy soils[J].Advances in Earth Science,2015,30(9):1 006-1 017.
[吴金水,葛体达,祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J].地球科学进展,2015,30(9):1 006-1 017.]
[6] Pan Genxing, Lu Haifei, Li Lianqing, et al.Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J].Advances in Earth Science,2015,30(8):940-951.
[潘根兴,陆海飞,李恋卿,等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.]
[7] Lovley D R, Chapelle F H, Phillips E J P. Fe (III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain[J].Geology,1990, 18(10): 954-957.
[8] Myers C R, Nealson K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988, 240(4 857):1 319-1 321.
[9] Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe (III) reduction on early Earth[J].Nature,1998, 395(6 697): 65-67.
[10] Marsili E, Baron D B, Shikhare I D, et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008, 105(10): 3 968-3 973.
[11] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J].Nature,2005, 435(7 045): 1 098-1 101.
[12] Wu Y, Liu T, Li X, et al.Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: Electrochemical parameters and thermodynamics[J].Environmental Science & Technology,2014, 48(16): 9 306-9 314.
[13] Lovley D R.Dissimilatory metal reduction[J].Annual Review of Microbiology,1993, 47(3): 263-290.
[14] Melton E D, Swanner E D, Behrens S, et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology,2014, 12(12): 797-808.
[15] Nakamura R, Kai F, Okamoto A, et al.Self-constructed electrically conductive bacterial networks[J].Angewandte Chemie International Edition,2009, 48(3): 508-511.
[16] Nakamura R, Kai F, Okamoto A, et al.Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides[J].Journal of Materials Chemistry A,2013, 1(16):5 148-5 157.
[17] Liu T, Li X, Zhang W, et al.Fe (III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J].Journal of Colloid and Interface Science,2014, 423: 25-32.
[18] Zhang W, Li X, Liu T, et al.Enhanced nitrate reduction and current generation by Bacillus sp. in the presence of iron oxides[J].Journal of Soils and Sediments,2012, 12(3): 354-365.
[19] Staniszewski A, Morris A J, Ito T, et al.Conduction band mediated electron transfer across nanocrystalline TiO2 surfaces[J].The Journal of Physical Chemistry B,2007, 111(24): 6 822-6 828.
[20] Stromberg J R, Wnuk J D, Pinlac R A F, et al. Multielectron transfer at heme-functionalized nanocrystalline TiO2: Reductive dechlorination of DDT and CCl4 forms stable carbene compounds[J]. Nano Letters, 2006, 6(6):1 284-1 286.
[21] Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist,2000, 85(4): 543-556.
[22] Latta D E, Gorski C A, Scherer M M.Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling[J].Biochemical Society Transactions,2012, 40(6): 1 191.
[23] Rosso K M, Yanina S V, Gorski C A, et al.Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe (II)[J].Environmental Science & Technology,2009, 44(1):61-67.
[24] Yu J, Wang Y, Xiao W.Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films[J].Journal of Materials Chemistry A,2013, 1(36): 10 727-10 735.
[25] Gauger T, Konhauser K, Kappler A.Protection of phototrophic iron (II)-oxidizing bacteria from UV irradiation by biogenic iron (III) minerals: Implications for early Archean banded iron formation[J].Geology,2015, 43(12): 1 067-1 070.
[26] Phoenix V R, Konhauser K O, Adams D G, et al.Role of biomineralization as an ultraviolet shield: Implications for Archean life[J].Geology,2001, 29(9): 823-826.
[27] Ng T W, Zhang L, Liu J, et al.Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr[J].Water Research,2016, 90: 111-118.
[28] Rtimi S, Pulgarin C, Sanjines R, et al.Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation[J].ACS Applied Materials & Interfaces,2015, 7(23): 12 832-12 839.
[29] Bonnefond A, Gonzlez E, Asua J M, et al.New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight[J].Colloids and Surfaces B: Biointerfaces,2015,135: 1-7.
[30] Lu A, Li Y, Jin S, et al.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications,2012,3:768,doi:10.1038/ncomms1768.
[31] Li Y, Lu A H, Wang X, et al.Semiconducting mineral photocatalytic regeneration of Fe2+ promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans[J].Acta Geologica Sinica,2013, 87(3):761-766.
[32] Sakimoto K K, Wong A B, Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science,2016, 351(6 268):74-77.
[33] Zhou S, Tang J, Yuan Y.Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems[J]. Bioelectrochemistry,2015, 102: 29-34.
[34] Lu Anhuai, Li Yan, Jin Song.Interactions between semiconducting minerals and bacteria under light[J].Elements,2012, 8(2): 125-130.
[35] Lu A H, Wang X, Li Y, et al.Mineral photoelectrons and their implications for the origin and early evolution of life on Earth[J].Science in China (Series D),2014, 57(5):897-902.
[36] Lu Anhuai, Li Yan, Wang Xin, et al.The photoelectron generation from semiconducting minerals and its effects in critical zone[J].Earth Science Frontiers,2014,21(3):256-264.
[鲁安怀, 李艳, 王鑫,等. 关键带中天然半导体矿物光电子的产生与作用[J].地学前缘, 2014, 21(3):256-264.]
[37] Dong H L, Lu A H.Mineral-microbe interactions and implications for remediation[J].Elements,2012, 8(2):95-100.
[38] Villano M, Aulenta F, Ciucci C, et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresource Technology,2010, 101(9): 3 085-3 090.
[39] Hansel C M, Benner S G, Neiss J, et al.Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J].Geochimica et Cosmochimica Acta,2003, 67(16): 2 977-2 992.
[40] Li F B, Li X M, Zhou S G, et al.Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J].Environmental Pollution,2010, 158(5):1 733-1 740.
[41] Li X M, Li Y T, Li F B, et al.Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds[J].Chinese Science Bulletin,2009,54(16):2 800-2 804.
[42] Richardson D J, Fredrickson J K, Zachara J M.Electron transport at the microbe-mineral interface: A synthesis of current research challenges[J].Biochemical Society Transactions,2012, 40(6):1 163-1 166.
[43] Wu Yundang, Li Fangbai, Liu Tongxu.Mechanism of extracellular electron transfer among microbe-humus-mineral in soil: A review[J].Acta Pedologica Sinica,2016,(2):277-291.
[吴云当,李芳柏,刘同旭.土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J].土壤学报, 2016,(2):277-291.]
[44] Feng C,Yue X,Li F,et al.Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria[J].Biosensors and Bioelectronics,2013,39(1):51-56.
[45] Handler R M, Beard B L, Johnson C M, et al.Atom exchange between aqueous Fe (II) and goethite: An Fe isotope tracer study[J].Environmental Science & Technology,2009, 43(4): 1 102-1 107.
[46] Yanina S V, Rosso K M.Linked reactivity at mineral-water interfaces through bulk crystal conduction[J].Science,2008, 320(5 873): 218-222.
[47] Boland D D, Collins R N, Miller C J, et al.Effect of solution and solid-phase conditions on the Fe (II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J].Environmental Science & Technology,2014, 48(10): 5 477-5 485.
[48] Li X, Liu T, Wang K, et al.Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina[J].Environmental Science & Technology,2015,49(3):1 392-1 399.
[49] Aelterman P, Rabaey K, Pham H T, et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J].Environmental Science & Technology,2006, 40(10):3 388-3 394.
[50] Cheng S, Logan B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J].Electrochemistry Communications,2007,9(3):492-496.
[51] Wang L, Su L, Chen H, et al.Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer[J].Materials Letters,2015,141:311-314,doi:10.1016/j.matlet.2014.11.21.
[52] Peng X, Yu H, Wang X, et al.Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite[J]. Journal of Power Sources,2013,223: 94-99,doi:10.1016/j.jpowsour.2012.09.057.
[53] Peng X, Yu H, Ai L, et al.Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells[J]. Bioresource Technology, 2013,144:689-692,doi:10.1016/j.biortech.2013.07.037.
[54] Kato S,Hashimoto K, Watanabe K.Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.
[J]. Microbes and Environments,2013,28(1):141-148.
[55] Kato S, Nakamura R, Kai F, et al.Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals[J].Environmental Microbiology,2010,12(12):3 114-3 123.
[56] Nakamura R, Okamoto1 A, Tajima1 N, et al. Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium[J].Chembiochem,2010,11(5):643-645.
[57] Jiang X, Hu J, Lieber A M, et al.Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J].Nano Letters,2014,14(11):6 737-6 742.
[58] Kondo K, Okamoto A, Hashimoto K, et al.Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J].Langmuir,2015, 31(26): 7 427-7 434.
[59] White G F, Shi Z, Shi L, et al.Rapid electron exchange between surface-exposed bacterial cytochromes and Fe (III) minerals[J].Proceedings of the National Academy of Sciences,2013, 110(16): 6 346-6 351.
[60] Feng C H, Li F B, Sun K W, et al.Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells[J].Bioresource Technology,2011, 102(2):1 131-1 136.
[61] Cao F, Liu T X, Wu C Y, et al.Enhanced biotransformation of DDTs by an iron-and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS)[J].Journal of Food and Agricultural Chemistry,2012, 60(45):11 238-11 244.
[62] Tao L, Zhu Z K, Li F B.Fe(II)/Cu(II) Interaction on α-FeOOH, Kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,425:92-98,doi:10.1016/j.colsurfa.2013.02.057.
[63] Li F, Wang X, Li Y, et al.Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface[J].Journal of Colloid and Interface Science,2008, 321(2): 332-341.
[64] Zhang W, Li X, Liu T, et al.Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014, 445: 97-104,doi:10.1016/j.colsurfa.2014.01.023.
[65] Liu T, Zhang W, Li X, et al.Kinetics of competitive reduction of nitrate and iron oxides by HS01[J].Soil Science Society of America Journal,2014, 78(6): 1 903-1 912.
[66] Kouzuma A, Kato S, Watanabe K.Microbial interspecies interactions: Recent findings in syntrophic consortia[J].Frontiers in Microbiology,2015, 6:477,doi:10.3389/fmicb.2015.00477.
[67] Zhang Jie, Lu Yahai.A review of interspecies electron transfer in syntrophic-methanogenic associations[J].Microbiology China, 2015, 42(5): 920-927.
[张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J].微生物学通报, 2015, 42(5): 920-927.]
[68] Kato S, Hashimoto K, Watanabe K.Microbial interspecies electron transfer via electric currents through conductive minerals[J].Proceedings of the National Academy of Sciences,2012, 109(25): 10 042-10 046.
[69] Kato S, Hashimoto K, Watanabe K.Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental Microbiology,2012, 14(7): 1 646-1 654.
[70] Li H, Chang J, Liu P, et al.Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J].Environmental Microbiology,2015, 17(5): 1 533-1 547.
[71] Viggi C C, Rossetti S, Fazi S, et al.Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J].Environmental Science & Technology,2014, 48(13): 7 536-7 543.
[72] Liu F, Rotaru A E, Shrestha P M, et al.Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J].Environmental Microbiology,2015, 17(3): 648-655.
[73] Beckmann S, Welte C, Li X, et al.Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation[J].Energy & Environmental Science,2016,doi:10.1039/c5ee03085d.
[74] Bose A, Gardel E J, Vidoudez C, et al.Electron uptake by iron-oxidizing phototrophic bacteria[J].Nature Communications, 2014, 5:3 391,doi:10.1038/ncomms4391.
[75] Rutherford A W, Boussac A.Water photolysis in biology[J].Science,2004, 303(5 665):1 782-1 784.
[76] Herrero C, Lassalle-Kaiser B, Leibl W, et al.Artificial systems related to light driven electron transfer processes in PSII[J].Coordination Chemistry Reviews,2008, 252(3): 456-468.
[77] Beam J C, LeBlanc G, Gizzie E A, et al. Construction of a semiconductor-biological interface for solar energy conversion:P-doped silicon/photosystem I/zinc oxide[J].Langmuir,2015, 31(36): 10 002-10 007.
[78] Ocakoglu K, Krupnik T, van den Bosch B, et al. Photosystem I-based biophotovoltaics on nanostructured hematite[J].Advanced Functional Materials,2014, 24(47): 7 467-7 477.
[79] Mershin A, Matsumoto K, Kaiser L, et al.Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO[J].Scientific Reports,2012,2:234,doi:10.1038/srep00234.
[80] Ochiai H, Shibata H, Sawa Y, et al.Properties of semiconductor electrodes coated with living films of cyanobacteria[J].Applied Biochemistry and Biotechnology,1983, 8(4): 289-303.
[81] Ochiai H, Shibata H, Sawa Y, et al.Water biophotolysis system using cyanobacterial electrode[J].Chemistry Letters,1987, 16(9): 1 807-1 810.
[82] Lu A, Li Y.Light fuel cell (LFC): A novel device for interpretation of microorganisms-involved mineral photochemical process[J]. Geomicrobiology Journal,2012, 29(3): 236-243.
[83] Sakimoto K K, Wong A B, Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J].Science,2016,351(6 268):74-77.
[84] Eggleston C M, Khare N, Lovelace D M.Cytochrome c interaction with hematite (α-Fe2O3) surfaces[J].Journal of Electron Spectroscopy and Related Phenomena,2006, 150(2):220-227.
[85] Dias C F B, Araujo-Chaves J C, Mugnol K C U, et al. Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c[J].RSC Advances,2012, 2(19):7 417-7 426.
[86] Juliana C. Araujo-Chaves, Aryane Tofanello, et al.Cytochrome C as an electron acceptor of nanostructured titania and hematite semiconductors[J].Journal of Enaergy Challenges and Mechanics,2014,1(2):86-94.
[1] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[2] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[3] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[6] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[7] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[8] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[9] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[10] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[11] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[12] 郭荣涛. 硅质碎屑岩中的微生物席相关构造——联接现代与过去的纽带[J]. 地球科学进展, 2013, 28(4): 467-476.
[13] 宋长青,吴金水,陆雅海,沈其荣,贺纪正,黄巧云,贾仲君,冷疏影,朱永官. 中国土壤微生物学研究十年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.
[14] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[15] 梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展, 2011, 26(6): 586-597.
阅读次数
全文


摘要