[1] |
Fredrickson J K, Zachara J M.Electron transfer at the microbe-mineral interface: A grand challenge in biogeochemistry[J].Geobiology,2008, 6(3): 245-253.
|
[2] |
Melton E D, Swanner E D, Behrens S, et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J].Nature Reviews Microbiology,2014, 12(12): 797-808.
|
[3] |
Borch T, Kretzschmar R, Kappler A, et al.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science & Technology,2009, 44(1): 15-23.
|
[4] |
Chen M, Liu C, Li X, et al.Iron reduction coupled to reductive dechlorination in red soil: A review[J].Soil Science,2014, 179(10/11): 457-467.
|
[5] |
Wu Jinshui, Ge Tida, Zhu Zhenke.Discussion on the key microbial process of carbon cycle and stoichiometric regulation mechanisms in paddy soils[J].Advances in Earth Science,2015,30(9):1 006-1 017.
|
|
[吴金水,葛体达,祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J].地球科学进展,2015,30(9):1 006-1 017.]
|
[6] |
Pan Genxing, Lu Haifei, Li Lianqing, et al.Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J].Advances in Earth Science,2015,30(8):940-951.
|
|
[潘根兴,陆海飞,李恋卿,等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.]
|
[7] |
Lovley D R, Chapelle F H, Phillips E J P. Fe (III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain[J].Geology,1990, 18(10): 954-957.
|
[8] |
Myers C R, Nealson K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988, 240(4 857):1 319-1 321.
|
[9] |
Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe (III) reduction on early Earth[J].Nature,1998, 395(6 697): 65-67.
|
[10] |
Marsili E, Baron D B, Shikhare I D, et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008, 105(10): 3 968-3 973.
|
[11] |
Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J].Nature,2005, 435(7 045): 1 098-1 101.
|
[12] |
Wu Y, Liu T, Li X, et al.Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: Electrochemical parameters and thermodynamics[J].Environmental Science & Technology,2014, 48(16): 9 306-9 314.
|
[13] |
Lovley D R.Dissimilatory metal reduction[J].Annual Review of Microbiology,1993, 47(3): 263-290.
|
[14] |
Melton E D, Swanner E D, Behrens S, et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology,2014, 12(12): 797-808.
|
[15] |
Nakamura R, Kai F, Okamoto A, et al.Self-constructed electrically conductive bacterial networks[J].Angewandte Chemie International Edition,2009, 48(3): 508-511.
|
[16] |
Nakamura R, Kai F, Okamoto A, et al.Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides[J].Journal of Materials Chemistry A,2013, 1(16):5 148-5 157.
|
[17] |
Liu T, Li X, Zhang W, et al.Fe (III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J].Journal of Colloid and Interface Science,2014, 423: 25-32.
|
[18] |
Zhang W, Li X, Liu T, et al.Enhanced nitrate reduction and current generation by Bacillus sp. in the presence of iron oxides[J].Journal of Soils and Sediments,2012, 12(3): 354-365.
|
[19] |
Staniszewski A, Morris A J, Ito T, et al.Conduction band mediated electron transfer across nanocrystalline TiO2 surfaces[J].The Journal of Physical Chemistry B,2007, 111(24): 6 822-6 828.
|
[20] |
Stromberg J R, Wnuk J D, Pinlac R A F, et al. Multielectron transfer at heme-functionalized nanocrystalline TiO2: Reductive dechlorination of DDT and CCl4 forms stable carbene compounds[J]. Nano Letters, 2006, 6(6):1 284-1 286.
|
[21] |
Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist,2000, 85(4): 543-556.
|
[22] |
Latta D E, Gorski C A, Scherer M M.Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling[J].Biochemical Society Transactions,2012, 40(6): 1 191.
|
[23] |
Rosso K M, Yanina S V, Gorski C A, et al.Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe (II)[J].Environmental Science & Technology,2009, 44(1):61-67.
|
[24] |
Yu J, Wang Y, Xiao W.Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films[J].Journal of Materials Chemistry A,2013, 1(36): 10 727-10 735.
|
[25] |
Gauger T, Konhauser K, Kappler A.Protection of phototrophic iron (II)-oxidizing bacteria from UV irradiation by biogenic iron (III) minerals: Implications for early Archean banded iron formation[J].Geology,2015, 43(12): 1 067-1 070.
|
[26] |
Phoenix V R, Konhauser K O, Adams D G, et al.Role of biomineralization as an ultraviolet shield: Implications for Archean life[J].Geology,2001, 29(9): 823-826.
|
[27] |
Ng T W, Zhang L, Liu J, et al.Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr[J].Water Research,2016, 90: 111-118.
|
[28] |
Rtimi S, Pulgarin C, Sanjines R, et al.Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation[J].ACS Applied Materials & Interfaces,2015, 7(23): 12 832-12 839.
|
[29] |
Bonnefond A, Gonzlez E, Asua J M, et al.New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight[J].Colloids and Surfaces B: Biointerfaces,2015,135: 1-7.
|
[30] |
Lu A, Li Y, Jin S, et al.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications,2012,3:768,doi:10.1038/ncomms1768.
|
[31] |
Li Y, Lu A H, Wang X, et al.Semiconducting mineral photocatalytic regeneration of Fe2+ promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans[J].Acta Geologica Sinica,2013, 87(3):761-766.
|
[32] |
Sakimoto K K, Wong A B, Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science,2016, 351(6 268):74-77.
|
[33] |
Zhou S, Tang J, Yuan Y.Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems[J]. Bioelectrochemistry,2015, 102: 29-34.
|
[34] |
Lu Anhuai, Li Yan, Jin Song.Interactions between semiconducting minerals and bacteria under light[J].Elements,2012, 8(2): 125-130.
|
[35] |
Lu A H, Wang X, Li Y, et al.Mineral photoelectrons and their implications for the origin and early evolution of life on Earth[J].Science in China (Series D),2014, 57(5):897-902.
|
[36] |
Lu Anhuai, Li Yan, Wang Xin, et al.The photoelectron generation from semiconducting minerals and its effects in critical zone[J].Earth Science Frontiers,2014,21(3):256-264.
|
|
[鲁安怀, 李艳, 王鑫,等. 关键带中天然半导体矿物光电子的产生与作用[J].地学前缘, 2014, 21(3):256-264.]
|
[37] |
Dong H L, Lu A H.Mineral-microbe interactions and implications for remediation[J].Elements,2012, 8(2):95-100.
|
[38] |
Villano M, Aulenta F, Ciucci C, et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresource Technology,2010, 101(9): 3 085-3 090.
|
[39] |
Hansel C M, Benner S G, Neiss J, et al.Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J].Geochimica et Cosmochimica Acta,2003, 67(16): 2 977-2 992.
|
[40] |
Li F B, Li X M, Zhou S G, et al.Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J].Environmental Pollution,2010, 158(5):1 733-1 740.
|
[41] |
Li X M, Li Y T, Li F B, et al.Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds[J].Chinese Science Bulletin,2009,54(16):2 800-2 804.
|
[42] |
Richardson D J, Fredrickson J K, Zachara J M.Electron transport at the microbe-mineral interface: A synthesis of current research challenges[J].Biochemical Society Transactions,2012, 40(6):1 163-1 166.
|
[43] |
Wu Yundang, Li Fangbai, Liu Tongxu.Mechanism of extracellular electron transfer among microbe-humus-mineral in soil: A review[J].Acta Pedologica Sinica,2016,(2):277-291.
|
|
[吴云当,李芳柏,刘同旭.土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J].土壤学报, 2016,(2):277-291.]
|
[44] |
Feng C,Yue X,Li F,et al.Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria[J].Biosensors and Bioelectronics,2013,39(1):51-56.
|
[45] |
Handler R M, Beard B L, Johnson C M, et al.Atom exchange between aqueous Fe (II) and goethite: An Fe isotope tracer study[J].Environmental Science & Technology,2009, 43(4): 1 102-1 107.
|
[46] |
Yanina S V, Rosso K M.Linked reactivity at mineral-water interfaces through bulk crystal conduction[J].Science,2008, 320(5 873): 218-222.
|
[47] |
Boland D D, Collins R N, Miller C J, et al.Effect of solution and solid-phase conditions on the Fe (II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J].Environmental Science & Technology,2014, 48(10): 5 477-5 485.
|
[48] |
Li X, Liu T, Wang K, et al.Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina[J].Environmental Science & Technology,2015,49(3):1 392-1 399.
|
[49] |
Aelterman P, Rabaey K, Pham H T, et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J].Environmental Science & Technology,2006, 40(10):3 388-3 394.
|
[50] |
Cheng S, Logan B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J].Electrochemistry Communications,2007,9(3):492-496.
|
[51] |
Wang L, Su L, Chen H, et al.Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer[J].Materials Letters,2015,141:311-314,doi:10.1016/j.matlet.2014.11.21.
|
[52] |
Peng X, Yu H, Wang X, et al.Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite[J]. Journal of Power Sources,2013,223: 94-99,doi:10.1016/j.jpowsour.2012.09.057.
|
[53] |
Peng X, Yu H, Ai L, et al.Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells[J]. Bioresource Technology, 2013,144:689-692,doi:10.1016/j.biortech.2013.07.037.
|
[54] |
Kato S,Hashimoto K, Watanabe K.Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.
|
|
[J]. Microbes and Environments,2013,28(1):141-148.
|
[55] |
Kato S, Nakamura R, Kai F, et al.Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals[J].Environmental Microbiology,2010,12(12):3 114-3 123.
|
[56] |
Nakamura R, Okamoto1 A, Tajima1 N, et al. Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium[J].Chembiochem,2010,11(5):643-645.
|
[57] |
Jiang X, Hu J, Lieber A M, et al.Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J].Nano Letters,2014,14(11):6 737-6 742.
|
[58] |
Kondo K, Okamoto A, Hashimoto K, et al.Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J].Langmuir,2015, 31(26): 7 427-7 434.
|
[59] |
White G F, Shi Z, Shi L, et al.Rapid electron exchange between surface-exposed bacterial cytochromes and Fe (III) minerals[J].Proceedings of the National Academy of Sciences,2013, 110(16): 6 346-6 351.
|
[60] |
Feng C H, Li F B, Sun K W, et al.Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells[J].Bioresource Technology,2011, 102(2):1 131-1 136.
|
[61] |
Cao F, Liu T X, Wu C Y, et al.Enhanced biotransformation of DDTs by an iron-and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS)[J].Journal of Food and Agricultural Chemistry,2012, 60(45):11 238-11 244.
|
[62] |
Tao L, Zhu Z K, Li F B.Fe(II)/Cu(II) Interaction on α-FeOOH, Kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,425:92-98,doi:10.1016/j.colsurfa.2013.02.057.
|
[63] |
Li F, Wang X, Li Y, et al.Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface[J].Journal of Colloid and Interface Science,2008, 321(2): 332-341.
|
[64] |
Zhang W, Li X, Liu T, et al.Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014, 445: 97-104,doi:10.1016/j.colsurfa.2014.01.023.
|
[65] |
Liu T, Zhang W, Li X, et al.Kinetics of competitive reduction of nitrate and iron oxides by HS01[J].Soil Science Society of America Journal,2014, 78(6): 1 903-1 912.
|
[66] |
Kouzuma A, Kato S, Watanabe K.Microbial interspecies interactions: Recent findings in syntrophic consortia[J].Frontiers in Microbiology,2015, 6:477,doi:10.3389/fmicb.2015.00477.
|
[67] |
Zhang Jie, Lu Yahai.A review of interspecies electron transfer in syntrophic-methanogenic associations[J].Microbiology China, 2015, 42(5): 920-927.
|
|
[张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J].微生物学通报, 2015, 42(5): 920-927.]
|
[68] |
Kato S, Hashimoto K, Watanabe K.Microbial interspecies electron transfer via electric currents through conductive minerals[J].Proceedings of the National Academy of Sciences,2012, 109(25): 10 042-10 046.
|
[69] |
Kato S, Hashimoto K, Watanabe K.Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental Microbiology,2012, 14(7): 1 646-1 654.
|
[70] |
Li H, Chang J, Liu P, et al.Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J].Environmental Microbiology,2015, 17(5): 1 533-1 547.
|
[71] |
Viggi C C, Rossetti S, Fazi S, et al.Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J].Environmental Science & Technology,2014, 48(13): 7 536-7 543.
|
[72] |
Liu F, Rotaru A E, Shrestha P M, et al.Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J].Environmental Microbiology,2015, 17(3): 648-655.
|
[73] |
Beckmann S, Welte C, Li X, et al.Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation[J].Energy & Environmental Science,2016,doi:10.1039/c5ee03085d.
|
[74] |
Bose A, Gardel E J, Vidoudez C, et al.Electron uptake by iron-oxidizing phototrophic bacteria[J].Nature Communications, 2014, 5:3 391,doi:10.1038/ncomms4391.
|
[75] |
Rutherford A W, Boussac A.Water photolysis in biology[J].Science,2004, 303(5 665):1 782-1 784.
|
[76] |
Herrero C, Lassalle-Kaiser B, Leibl W, et al.Artificial systems related to light driven electron transfer processes in PSII[J].Coordination Chemistry Reviews,2008, 252(3): 456-468.
|
[77] |
Beam J C, LeBlanc G, Gizzie E A, et al. Construction of a semiconductor-biological interface for solar energy conversion:P-doped silicon/photosystem I/zinc oxide[J].Langmuir,2015, 31(36): 10 002-10 007.
|
[78] |
Ocakoglu K, Krupnik T, van den Bosch B, et al. Photosystem I-based biophotovoltaics on nanostructured hematite[J].Advanced Functional Materials,2014, 24(47): 7 467-7 477.
|
[79] |
Mershin A, Matsumoto K, Kaiser L, et al.Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO[J].Scientific Reports,2012,2:234,doi:10.1038/srep00234.
|
[80] |
Ochiai H, Shibata H, Sawa Y, et al.Properties of semiconductor electrodes coated with living films of cyanobacteria[J].Applied Biochemistry and Biotechnology,1983, 8(4): 289-303.
|
[81] |
Ochiai H, Shibata H, Sawa Y, et al.Water biophotolysis system using cyanobacterial electrode[J].Chemistry Letters,1987, 16(9): 1 807-1 810.
|
[82] |
Lu A, Li Y.Light fuel cell (LFC): A novel device for interpretation of microorganisms-involved mineral photochemical process[J]. Geomicrobiology Journal,2012, 29(3): 236-243.
|
[83] |
Sakimoto K K, Wong A B, Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J].Science,2016,351(6 268):74-77.
|
[84] |
Eggleston C M, Khare N, Lovelace D M.Cytochrome c interaction with hematite (α-Fe2O3) surfaces[J].Journal of Electron Spectroscopy and Related Phenomena,2006, 150(2):220-227.
|
[85] |
Dias C F B, Araujo-Chaves J C, Mugnol K C U, et al. Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c[J].RSC Advances,2012, 2(19):7 417-7 426.
|
[86] |
Juliana C. Araujo-Chaves, Aryane Tofanello, et al.Cytochrome C as an electron acceptor of nanostructured titania and hematite semiconductors[J].Journal of Enaergy Challenges and Mechanics,2014,1(2):86-94.
|