[1]Jansson J K. FORUM: Microbiology the life beneath our feet[J]. Nature, 2013, 494(7 435): 40-41.
[2]Waksman S A. Soil Microbiology[M]. New York: John Wiley and Sons, Inc., 1952.
[3]Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles[J]. Science, 2008, 320(5 879): 1 034-1 039.
[4]Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility: A review[J]. Agronomy for Sustainable Development, 2010, 30(2): 401-422.
[5]Nielsen U N, Ayres E, Wall D H, et al. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships[J]. European Journal of Soil Science, 2011, 62(1): 105-116.
[6]Mager D M, Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts a review of their role in dryland soil processes[J]. Journal of Arid Environments, 2011, 75(2): 91-97.
[7]Huang Q Y, Chen W L, Xu L H. Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite[J]. Geomicrobiology Journal, 2005, 22(5): 227-236.
[8]Cosentino D, Chenu C, Le Bissonnais Y. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil[J]. Soil Biology & Biochemistry, 2006, 38(8): 2 053-2 062.
[9]Griffiths B S, Qin L, Huili W, et al. Restoration of soil physical and biological stability are not coupled in response to plants and earthworms[J]. Ecological Restoration, 2008, 26(2): 102-104.
[10]Lin Q M, Zhao X R, Zhao Z J, et al. Rock phosphate solubilization mechanisms of one fungus and one bacterium[J]. Agricultural Sciences in China, 2002, 1(9): 1 023-1 028.
[11]Wu J, Huang M, Xiao H A, et al. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Plant and Soil, 2007, 290(1/2): 333-342.
[12]IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC[M]. Cambridge:Cambridge University Press, 2007.
[13]Mahecha M D, Reichstein M, Carvalhais N, et al. Global convergence in the temperature sensitivity of respiration at ecosystem level[J]. Science, 2010, 329(5 993): 838-840.
[14]Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.
[15]Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[J]. Journal of Climate, 2006, 19(14): 3 337-3 353.
[16]Patt T E, Cole G C, Bland J, et al. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy[J]. Journal of Bacteriology, 1974, 120(2): 955-964.
[17]Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution, 2005, 133(1): 71-84.
[18]Horvath R S. Microbial co-metabolism and the degradation of organic compounds in nature[J]. Bacteriological Reviews, 1972, 36(2): 146-155.
[19]Parks J M, Johs A, Podar M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6 125): 1 332-1 335.
[20]Tang G, Watson D B, Wu W M, et al. U(VI) bioreduction with emulsified vegetable oil as the electron donor-model application to a field test[J]. Environmental Science & Technology, 2013, 47(7): 3 218-3 225.
[21]He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2 364-2 374.
[22]Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60(4): 850-861.
[23]Liu J, Hou H, Sheng R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J]. Applied Soil Ecology, 2012, 62:155-162.
[24]Zhu G, Wang S, Wang Y, et al. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 2011, 5(12): 1 905-1 912.
[25]Zhu G, Wang S, Wang W, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces[J]. Nature Geoscience, 2013, 6(2): 103-107.
[26]Ying J Y, Zhang L M, He J Z. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns[J]. Environmental Microbiology Reports, 2010, 2(2): 304-312.
[27]Shen J P, Zhang L M, Zhu Y G, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008, 10(6): 1 601-1 611.
[28]Hu H W, Zhang L M, Dai Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing[J]. Journal of Soils and Sediments, 2013, 13(8): 1 439-1 449.
[29] Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17240-17245.
[30]Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 2012, 6(5): 1 032-1 045.
[31]Lu L, Han W, Zhang J, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10): 1 978-1 984.
[32]Lu L, Jia Z J. Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology, 2013, 15(6): 1 795-1 809.
[33]Di H J, Cameron K, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009, 2(9): 621-624.
[34]Xia W W, Zhang C X, Zeng X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7): 1 226-1 236.
[35]He J Z, Hu H W, Zhang L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology & Biochemistry, 2012, 55: 146-154.
[36]Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6 932): 608-611.
[37]Dalsgaard T, Canfield D E, Petersen J, et al. N-2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422(6 932): 606-608.
[38]Peng J J, Lue Z, Rui J P, et al. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil[J]. Applied and Environmental Microbiology, 2008, 74(9): 2 894-2 901. [39]Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Environmental Microbiology, 2009, 75(14): 4 879-4 886.
[39]Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Environmental Microbiology, 2009, 75(14): 4 879-4 886.
[40]Liu P F, Qiu Q F, Lu Y H. Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil[J]. Applied and Environmental Microbiology, 2011, 77(11): 3 884-3 887.
[41]Rui J P, Qiu Q F, Lu Y H. Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil[J]. FEMS Microbiology Ecology, 2011, 77(2): 264-273.
[42]Gan Y L, Qiu Q F, Liu P F, et al. Syntrophic oxidation of propionate in rice field soil at 15 and 30 degrees C under methanogenic conditions[J]. Applied and Environmental Microbiology, 2012, 78(14): 4 923-4 932.
[43]Yuan Q, Lu Y H. Response of methanogenic archaeal community to nitrate addition in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5): 362-369.
[44]Yuan Y L, Conrad R, Lu Y H. Responses of methanogenic archaeal community to oxygen exposure in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5): 347-354.
[45]Yuan Y L, Conrad R, Lu Y H. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil[J]. Environmental Microbiology Reports, 2011, 3(3): 320-328.
[46]Qiu Q F, Noll M, Abraham W R, et al. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ[J]. The ISME Journal, 2008, 2(6): 602-614.
[47]Qiu Q F, Conrad R, Lu Y H. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia[J]. Environmental Microbiology Reports, 2009, 1(5): 355-361.
[48]Ma K, Qiu Q F, Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16(11): 3 085-3 095.
[49]Ma K, Lu Y H. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75(3): 446-456.
[50]Ma K, Conrad R, Lu Y H. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil[J]. Applied and Environmental Microbiology, 2012, 78(2): 445-454.
[51]Lu Z, Lu Y H. Methanocella conradii sp nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil[J]. PLoS One, 2012, 7(4): e35279.
[52]Lu Z, Lu Y H. Complete genome sequence of a thermophilic methanogen, methanocella conradii HZ254, isolated from Chinese rice field soil[J]. Journal of Bacteriology, 2012, 194(9): 2 398-2 399.
[53]Wu J S, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure[J]. Soil Biology & Biochemistry, 1990, 22(8): 1 167-1 169.
[54]Joergensen R G, Wu J S, Brookes P C. Measuring soil microbial biomass using an automated procedure[J]. Soil Biology & Biochemistry, 2011, 43(5): 873-876.
[55]Wu J S, Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry, 2005, 37(3): 507-515.
[56]He H, Zhang W, Zhang X, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J]. Soil Biology & Biochemistry, 2011, 43(6): 1 155-1 161.
[57]Ding L, Wu J, Xiao H, et al. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 073-1 079.
[58]Zhang X D, Ang J, Xie H T, et al. Comparison of organic compounds in the particle-size fractions of earthworm casts and surrounding soil in humid Laos[J]. Applied Soil Ecology, 2003, 23(2): 147-153.
[59]Li Y, Wu J, Liu S, et al. Is the C∶ [KG-*2]N∶ [KG-*2]P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J]. Global Biogeochemical Cycles, 2012, 26: GB4002.
[60]Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems & Environment, 2009, 129(1/3): 344-348.
[61]Zhang W J, Wang X J, Xu M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J]. Biogeosciences, 2010, 7(2): 409-425.
[62]Wu J. Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29-34.
[63]Ge T, Yuan H, Zhu H, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system[J]. Soil Biology & Biochemistry, 2012, 48:39-46.
[64]Wu J, Zhou P, Li L, et al. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 031-1 037.
[65]Yuan H, Ge T, Wu X, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95(4): 1 061-1 071.
[66]Ge T, Wu X, Chen X, et al. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013, 113:70-78.
[67]Huang Y, Sun W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades[J]. Chinese Science Bulletin, 2006, 51(15): 1 785-1 803.
[68]Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland[J]. Global Change Biology, 2009, 15(2): 281-305.
[69]Pan G, Xu X, Smith P, et al. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J]. Agriculture Ecosystems & Environment, 2010, 136(1/2): 133-138.
[70]Yan X, Cai Z, Wang S, et al. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology, 2011, 17(3): 1 487-1 496.
[71]Zhou P, Song G, Pan G, et al. Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystern experiments from South China[J]. Geoderma, 2009, 153(1/2): 52-60.
[72]Zhou P, Pan G X, Spaccini R, et al. Molecular changes in Particulate Organic Matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments[J]. European Journal of Soil Science, 2010, 61(2): 231-242.
[73]Hiltner L. über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59-78.
[74]Morgan J A, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56(417): 1 729-1 739.
[75]Berendsen R L, Pieterse C M J, Bakker P. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486.
[76]Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489-499.
[77]Morrissey J P, Dow J M, Mark G L, et al. Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture[J]. EMBO Reports, 2004, 5(10): 922-926.
[78]Zamioudis C, Pieterse C M J. Modulation of host immunity by beneficial microbes[J]. Molecular Plant-Microbe Interactions, 2012, 25(2): 139-150.
[79]Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interations with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266.
[80]Xu Z H, Shao J H, Li B, et al. Contribution of bacillomycin D in bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Applied and Environmental Microbiology, 2013, 79(3): 808-815.
[81]Weng J, Wang Y, Li J, et al. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption[J]. Applied Microbiology and Biotechnology, 2013, 97(19):8 823-8 830.
[82]Ling N, Raza W, Ma J H, et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology, 2011, 47(6): 374-379.
[83]Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7 409): 91-95.
[84]Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7 409): 86-90.
[85]Mendes R, Kruijt M, De Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6 033): 1 097-1 100.
[86]Lang J J, Hu J, Ran W, et al. Control of cotton verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer[J]. Biology and Fertility of Soils, 2012, 48(2): 191-203.
[87]Luo J, Ran W, Hu J A, et al. Application of bio-organic fertilizer significantly affected fungal diversity of soils[J]. Soil Science Society of America Journal, 2010, 74(6): 2 039-2 048.
[88]Qiu M H, Zhang R F, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48(7): 807-816.
[89]Rong Xingmin, Huang Qiaoyun, Chen Wenli, et al. Surface thermodynamical analysis of adsorption of bacteria on two soilclay minerals[J]. Acta Pedologica Sinica, 2011, 48(2):331-337.[荣兴民, 黄巧云, 陈雯莉, 等. 细菌在两种土壤矿物表面吸附的热力学分析[J]. 土壤学报, 2011, 48(2): 331-337.]
[90]Hong Z, Rong X, Cai P, et al. Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties[J]. European Journal of Soil Science, 2012, 63(4): 457-466.
[91]Cao Y, Wei X, Cai P, et al. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 122-127.
[92]Fang L, Cao Y, Huang Q, et al. Reactions between bacterial exopolymers and goethite: A combined macroscopic and spectroscopic investigation[J]. Water Research, 2012, 46(17): 5 613-5 620.
[93]Jiang D, Huang Q, Cai P, et al. Adsorption of Pseudomonas putida on clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2007, 54(2): 217-221.
[94]Rong X, Huang Q, He X, et al. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR[J]. Colloids and Surfaces B: Biointerfaces, 2008, 64(1): 49-55.
[95]Wu H, Jiang D, Cai P, et al. Adsorption of Pseudomonas putida on soil particle size fractions: Effects of solution chemistry and organic matter[J]. Journal of Soils and Sediments, 2012, 12(2): 143-149.
[96]Wu H, Jiang D, Cai P, et al. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(1): 147-151.
[97]Wu Huayong, Jiang Daihua, Cai Peng, et al. Effects of low-molecular-weight organic ligands on adsorption of Bacillus Thuringiensis by clay minerals[J]. Acta Pedologica Sinica, 2011, 48(6):1 293-1 297.[吴华勇, 蒋代华, 蔡鹏, 等.低分子量有机配体对黏粒矿物吸附苏云金芽孢杆菌的影响[J]. 土壤学报, 2011, 48(6): 1 293-1 297.]
[98]Hong Z, Rong X, Cai P, et al. Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry[J]. Geomicrobiology Journal, 2011, 28(8): 686-691.
[99]Rong X, Huang Q, Chen W. Microcalorimetric investigation on the metabolic activity of bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite[J]. Applied Clay Science, 2007, 38(1/2): 97-103.
[100]Cai P, Huang Q, Walker S L. Deposition and survival of escherichia coli O157∶ [KG-*2]H7 on clay minerals in a parallel plate flow system[J]. Environmental Science & Technology, 2013, 47(4): 1 896-1 903.
[101]Chen H, He X, Rong X, et al. Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite[J]. Applied Clay Science, 2009, 46(1): 102-108.
[102]Fang L, Cai P, Li P, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals[J]. Journal of Hazardous Materials, 2010, 181(1/3): 1 031-1 038.
[103]Fang L, Huang Q, Wei X, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by Extracellular Polymeric Substances (EPS), minerals and their composites[J]. Bioresource Technology, 2010, 101(15): 5 774-5 779.
[104]Feng X, Li P, Qiu G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1): 326-332.
[105]Ye J, Rensing C, Rosen B P, et al. Arsenic biomethylation by photosynthetic organisms[J]. Trends in Plant Science, 2012, 17(3): 155-162.
[106]Yin X X, Chen J, Qin J, et al. Biotransformation and volatilization of arsenic by three photosynthetic Cyanobacteria[J]. Plant Physiology, 2011, 156(3): 1 631-1 638.
[107]Jia Y, Huang H, Zhong M, et al. Microbial arsenic methylation in soil and rice rhizosphere[J]. Environmental Science & Technology, 2013, 47(7): 3 141-3 148.
[108]Huang H, Jia Y, Sun G X, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2 163-2 168.
[109]Jia Y, Huang H, Sun G X, et al. Pathways and relative contributions to arsenic volatilization from rice plants and paddy doil[J]. Environmental Science & Technology, 2012, 46(15): 8 090-8 096.
[110]Jia Y, Sun G X, Huang H, et al. Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil[J]. Plant and Soil, 2013, 365(1/2): 387-396.
[111]Lomax C, Liu W J, Wu L, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
[112]Meng X Y, Qin J, Wang L H, et al. Arsenic biotransformation and volatilization in transgenic rice[J]. New Phytologist, 2011, 191(1): 49-56.
[113]Meng L, Zhu Y G. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: How does it affect functional microbial abundance?[J]. Environmental Science & Technology, 2011, 45(4): 1 579-1 585.
[114]Peng J, Zhang Y, Su J, et al. Bacterial communities predominant in the degradation of C-13(4)-4, 5, 9, 10-pyrene during composting[J]. Bioresource Technology, 2013, 143:608-614.
[115]Teng Y, Luo Y, Sun M, et al. Effect of bioaugmentation by Paracoccus sp strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil[J]. Bioresource Technology, 2010, 101(10): 3 437-3 443.
[116]Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3 435-3 440.
[117]Zhang H, Zhang J, Zhao B, et al. Removal of bacteriophages MS2 and phiX174 from aqueous solutions using a red soil[J]. Journal of Hazardous Materials, 2010, 180(1/3): 640-647.
[118]Zhao B, Zhang H, Zhang J, et al. Virus adsorption and inactivation in soil as influenced by autochthonous microorganisms and water content[J]. Soil Biology & Biochemistry, 2008, 40(3): 649-659.
[119]Yao Z Y, Wei G, Wang H Z, et al. Survival of escherichia coli O157∶ [KG-*2]H7 in soils from vegetable fields with different cultivation patterns[J]. Applied and Environmental Microbiology, 2013, 79(5): 1 755-1 756.
[120]Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1 985-1 995.
[121]Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7 104): 806-809.
[122]Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea[J]. Proceedings of the National Academy of Sciences, 2010, 107(40): 17 240-17 245.
[123]Pester M, Schleper C, Wagner M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology[J]. Current Opinion in Microbiology, 2011, 14(3): 300-306.
[124]Prakash O, Jangid K, Shouche Y. Carl Woese: From biophysics to evolutionary microbiology[J]. Indian Journal of Microbiology, 2013, 53(3): 247-252.
[125]Wu Jinshui, Lin Qimei, Huang Qiaoyun, et al. Determination Method and Application of Soil Microbial Biomass[M]. Beijing: China Meteorological Press, 2006.[吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京:气象出版社, 2006.]
[126]O’donnell A G, Young I M, Rushton S P, et al. Visualization, modelling and prediction in soil microbiology[J]. Nature Reviews Microbiology, 2007, 5(9): 689-699.
[127]Feng Y Z, Lin X G, Zhu J G, et al. A phototrophy-driven microbial food web in a rice soil[J]. Journal of Soils and Sediments, 2011, 11(2): 301-311.
[128]Crotty F V, Adl S M, Blackshaw R P, et al. Using stable isotopes to differentiate trophic feeding channels within soil food webs[J]. Journal of Eukaryotic Microbiology, 2012, 59(6): 520-526.
[129]Feng Y Z, Lin X G, Jia Z J, et al. Identification of formate-metabolizing bacteria in paddy soil by DNA—Based stable isotope probing[J]. Soil Sciience of Society of America Journal, 2012, 76(1): 121-129.[FL)] |