地球科学进展 ›› 2007, Vol. 22 ›› Issue (2): 152 -158. doi: 10.11867/j.issn.1001-8166.2007.02.0152

综述与评述 上一篇    下一篇

土壤生物对土壤有机碳稳定性的影响
刘满强,陈小云,郭菊花,李辉信,胡 锋   
  1. 南京农业大学资源与环境科学学院土壤生态实验室,江苏 南京 210095
  • 收稿日期:2007-01-01 修回日期:2007-01-01 出版日期:2007-02-10
  • 通讯作者: 胡锋 (1963-), 男,山东济南人, 教授, 主要从事土壤生态学研究.E-mail: fhjwc@njau.edu.cn E-mail:fhjwc@njau.edu.cn
  • 基金资助:

    国家自然科学基金项目“水稻土有机碳的生物稳定机制及影响因素”(编号: 40501036)和“蚯蚓对农田土壤碳氮转化、平衡及作物生产力的影响”(编号: 30370286)资助.

Soil Biota on Soil Organic Carbon Stabilization

LIU Man-qiang, CHEN Xiao-yun , GUO Ju-hua, LI Hui-xin, HU Feng   

  1. Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095,China
  • Received:2007-01-01 Revised:2007-01-01 Online:2007-02-10 Published:2007-02-10

应对全球气候变化及制定温室气体减排措施必需了解土壤有机碳的稳定性。当前,比较公认的有机碳稳定机制包括选择性保存,空间不可接近性和分子交互作用。虽然已经有了大量的研究,但至今对土壤有机碳稳定性的稳定机制了解仍不完善,特别是有关土壤生物对有机碳稳定性的贡献没有受到足够重视。在此,我们首先基于公认的有机碳稳定机制探讨土壤生物对有机碳稳定性的影响,随后从土壤生物本身特性及生物与生境协同进化角度出发分析了土壤有机碳的生物稳定机制,特别强调了权衡有机碳稳定性与分解功能服务价值的重要性,最后从土壤生物角度展望了土壤有机碳稳定性研究中的重要方面。

Knowledge of soil organic carbon (SOC) stability is essential for understanding the changing global carbon cycle and developing strategies for mitigating the increasing greenhouse gas emission and global climate change. Current popular mechanisms for carbon stabilization mainly included (1) selective preservation due to recalcitrance of SOC, (2) spatial inaccessibility of SOC against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation, and (3) interaction with mineral surfaces and metal ions. Until now the mechanistic understanding of SOC stabilization are still not satisfying, especially for the roles of soil biota in the stabilization process. Therefore, first we explored specific functions of soil biota in SOC stabilization derived from the abovementioned mechanisms; Second we presented a conceptual  view that intrinsic nature of soil biota as well as coevolution between soil biota and habitat would influence SOC stability; Then the trade-off between value of SOC stabilization and profit of SOC decomposition were emphasized; Finally the promising research directions were listed in respect of soil biota in SOC stabilization, such as the roles of soil biota in (1) plant carbon and SOC resynthesis process, (2) the feedback loops between aboveground and belowground on SOC stability, (3) SOC stabilization under specific environmental and soil conditions, (4) SOC decomposition associated ecological service and SOC stabilization or storage under various soil managements, (5) SOC stabilization at different spatial and temporal scales. From the point of coevolution, the interactions between soil biota and SOC stability would be studied hierarchically, i.e. physiological characteristics of soil individual organism,life history of population, community and ecosystem properties.

中图分类号: 

[1]Post W M, Emanuel W P, Zinke P J, et al. Soil carbon pools and world life zones [J]. Nature, 1982, 298: 156-159.
[2]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304: 1 623-1 627.
[3]Post W M, Izaurralde R C, Jastrow J D, et al. Enhancement of carbon sequestration in US soils [J]. Bioscience, 2004, 54: 895-908.
[4]Pan Genxing, Li Lianqing, Zhang Xuhui, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands [J]. Advances in Earth Science, 2003, 18 (4): 609-618. [潘根兴, 李恋卿, 张旭辉, 等. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4) :609-618.]
[5]Liu Manqiang, Hu Feng, Chen Xiaoyun. A review on mechanisms of soil organic carbon stabilization [J]. Acta Ecologica Sinica, 2007 (in press). [刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007(待发).]
[6]Wang Shaoqiang, Liu Jiyuan. Research status of impact factors of soil carbon storage [J]. Advances in Earth Science, 2002, 17(4): 528-534. [王绍强, 刘纪远. 土壤碳蓄积量变化的影响因素研究现状[J]. 地球科学进展, 2002, 17(4) :528-534. ] 
[7]Zhang Guosheng, Huang Gaobao, Yin Chan. Soil organic carbon sequestration potential in cropland [J]. Acta Ecologica Sinica,2005, 25 (2): 351-357. [张国盛, 黄高宝, Yin Chan. 农田土壤有机碳固定潜力研究进展[J].生态学报, 2005, 25 (2): 351-357. ]
[8]Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon [J].Nature, 2002,419: 915-917.
[9]Krull E S, Baldock J A, Skjemstad J O. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover [J].Functional Plant Biology,2003, 30: 207-222.
[10]Falloon P D, Smith P Modelling refractory soil organic matter [J].Biology and Fertility of Soils,2000,30:388-398.
[11]Lützow M, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review[J].European Journal of Soil Science,2006, 57 (4): 426-445.
[12]Kiem R, Kogel-Knabner I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils [J].Soil Biology and Biochemistry,2003, 35: 101-118.
[13]Sollins P, Homann P, Caldwell B A. Stabilization and destabilization of soil organic matter: Mechanisms and controls [J].Geoderma,1996, 74: 65-105.
[14]Baldock J A, Masiello C A, Gelinas Y, et al. Cycling and composition of organic matter in terrestrial and marine ecosystems [J]. Marine Chemistry,2004, 92:39-64.
[15]Goh K M. Carbon sequestration and stabilization in soils: Implications for soil productivity and climate change [J].Soil Science and Plant Nutrition,2004, 50: 467-476.
[16]Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota [J].Science,2004, 304: 1 629-1 633.
[17]Blouin M, Zuily-Fodil Y, Pham-Thi A.-T, et al. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites [J].Ecology Letters,2005, 8: 202-208.
[18]Wardle D A. The influence of biotic interactions on soil biodiversity [J].Ecology Letters,2006, 9: 870-886.
[19]Wurst S, Langel R, Rodger S, et al. Effects of belowground biota on primary and secondary metabolites in Brassica oleracea [J]. Chemoecology,2006, 16: 69-73.
[20]Kaye J P, Hart S C. Competition for nitrogen between plants and soil microorganisms [J].Trends in Ecology & Evolution,1997, 12:139-143.
[21]Hodge A, Robinson D, Fitter A H. Are microbes more effective than plants at competing for nitrogen? [J].Trends in Plant Science,2000, 5: 304-308.
[22]Jouquet P, Dauber J, Lagerlöf J, et al. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops [J]. Applied Soil Ecology, 2006, 32 (2): 153-164.
[23]Chen Xiaoyun, Liu Manqiang, Hu Feng, et al. Roles of soil micro-fauna (protozoa and nematodes) in rhizosphere ecological functions [J]. Acta Ecologica Sinica,2006 (submitted). [陈小云, 刘满强, 胡锋, 等. 根际微型土壤动物(原生动物和线虫)的生态功能[J]. 生态学报, 2006 (已投稿).]
[24]Sulkava P, Huhta V, Laakso J, et al. Influence of soil fauna and habitat patchiness on plant (Betula pendula) growth and carbon dynamics in a microcosm experiment [J].Oecologia,2001, 129: 133-138.
[25]Meysman F J R, Middelburg J J, Heip C H R. Bioturbation: A fresh look at Darwin's last idea [J].Trends in Ecology & Evolution,2006, 21:688-695.
[26]Scheu S. Effects of earthworms on plant growth: Patterns and perspectives [J].Pedobiologia,2003, 47: 846-856.
[27]Gundale M J, Jolly W M, Deluca T H. Susceptibility of a northern hardwood forest to exotic earthworm invasion [J].Conservation Biology,2005, 19: 1 075-1 083.
[28]De Deyn G B, Raaljmakers C E, Zoomer H R, et al. Soil invertebrate fauna enhances grassland succession and diversity [J].Nature,2003, 422: 711-713. 
[29]van der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J].Nature,1998, 396: 69-72.
[30]Bohlen P J, Pelletier D M, Groffman P M, et al. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests [J]. Ecosystems,2004, 7: 13-27.
[31]Johnson D, Kresk M, Stott A W, et al. Soil invertebrates disrupt carbon flow through fungal networks [J].Science,2005, 309: 1 047-1 047.
[32]Kogel-Knabner I.The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter [J]. Soil Biology and Biochemistry,2002,34: 139-162.
[33]Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J].Soil Science Society America Journal,2006, 70: 555-569.
[34]Bucher V V C, Pointing S B, Hyde K D, et al. Production of wood decay enzymes, loss of mass and lignin solubilization in wood by diverse freshwater fungi [J]. Microbial Ecology,2004, 48: 331-337.
[35]Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil[C]//Burns, R G, Dick R P, eds. Enzymes in the Environment.New York:Marcel Dekker Inc. 2002:1-34. 
[36]Fox O, Vetter S, Ekschmitt K, et al. Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools [J]. Soil Biology & Biochemistry, 2006, 38: 1 253-1 263.
[37]Wolters V. Invertebrate control of soil organic matter stability[J].Biology and Fertility of Soils,2000, 31: 1-19.
[38]Johnston C A, Groffman P, Breshears D D, et al. Carbon cycling in soil [J]. Front Ecol Environ,2004, 2: 522-528.
[39]Martin A. Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannahs on soil organic matter [J].Biology and Fertility of Soils,1991, 11: 234-238.
[40]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J].Journal of Soil Science,1982, 33: 141-163.
[41]Franzluebbers A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils [J]. Applied Soil Ecology,1999, 11: 91-101.
[42]Hassink J, Bouwmann L A, Zwart K B, et al. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils [J].Geoderma,1993, 57: 105-128.
[43]Bossuyt H, Six J, Hendrix P F. Rapid incorporation of fresh residue-derived carbon into newly formed microaggregates within earthworm casts [J]. European Journal of Soil Science,2004, 55: 393-399.
[44]Bossuyt H, Six J, Hendrix P F. Protection of soil carbon by microaggregates within earthworm casts [J].Soil Biology and Biochemistry,2005, 37: 251-258.
[45]Pullemana M M, Six J, Uyl A, et al. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils [J].Applied Soil Ecology,2005, 29: 1-15.
[46]Marinissen J C Y, Didden W A M. Influence of the enchytraeid worm Buchholzia appendiculata on aggregate formation and organic matter decomposition [J].Soil Biology and Biochemistry,1997, 29: 387-390.
[47]Hallett P D, Young I M. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity [J].European Journal of Soil Science,1999, 50: 35-40.
[48]Roper M M. The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils [J].Australian Journal  Soil Research,2004, 42:427-434.
[49]White N A, Hallett P D, Feeney D, et al. Changes to water repellence of soil caused by the growth of white-rot fungi: Studies using a novel microcosm system [J].FEMS Microbiology Letters,2000, 184: 73-77.
[50]Feeney D S, Hallett P D, Rodger S, et al. Impact of fungal and bacterial biocides on microbial induced water repellency in arable soil [J]. Geoderma,2006, 135: 75-80.
[51]Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the Northeast Pacific Ocean [J]. American Mineralogist,1998, 83:1 399-1 408.
[52]Bennett P C, Rogers J A, Hiebert F K, et al.Silicates, silicate weathering, and microbial ecology [J]. Geomicrobiology Journal,2001, 18: 3-19.
[53]Frankel R B, Bazylinski D A. Biologically induced mineralization in prokaryotes [J]. Reviews in Mineralogy and Geochemistry,2003, 54: 95-114.
[54]Suzuki Y, Matsubara T, Hoshino M. Breakdown of mineral grains by earthworms and beetle larvae [J]. Geoderma,2003, 112: 131-142.
[55]Mikutta R, Kleber M, Torn M, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? [J]. Biogeochemistry,2006, 77(1): 25-56.
[56]Li Yongtao, Dai Jun, Becquer T, et al. Availability of different organic carbon fractions of paddy soils under two heavy metal contamination levels [J]. Acta Ecologica Sinica,2006, 26(1):138-145. [李永涛, 戴军, Becquer T, 等. 不同形态有机碳的有效性在两种重金属污染水平下水稻土壤中的差异[J]. 生态学报, 2006, 26 (1): 138-145.]
[57]Jentschke G, Godbold D L. Metal toxicity and ectomycorrhizas [J].Physiologia Plantarum,2000, 109: 107-116.
[58]Wen B, Hu X Y, Liu Ying, et al. The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils [J]. Biology and Fertility of Soils,2004, 40:181-187.
[59]Liu X, Hu C, Zhang S. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge [J]. Environment International,2005, 31: 874-879.
[60]Ekschmitt K, Liu M , Vetter S, et al. Strategies used by soil biota to overcome soil organic matter stability—Why is dead organic matter left over in the soil? [J]. Geoderma,2005, 128: 167-176.
[61]Lavelle P. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function [J]. Advances in Ecological Research,1997, 27: 93-132.
[62]Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: A question of microbial competition? [J]. Soil Biology and Biochemistry,2003, 35: 837-843.
[63]Moore J C. Top-down is bottom-up: Does predation in the rhizosphere regulate aboveground dynamics? [J]. Ecology,2003, 84(4): 846-857.
[64]Janzen H H. The soil carbon dilemma: Shall we hoard it or use it? [J]. Soil Biology and Biochemistry,2006, 38: 419-424.

[1] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[2] 潘根兴, 陆海飞, 李恋卿, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 郑金伟. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
[3] 宋长青,吴金水,陆雅海,沈其荣,贺纪正,黄巧云,贾仲君,冷疏影,朱永官. 中国土壤微生物学研究十年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.
[4] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
[5] 肖胜生,董云社,齐玉春,彭琴,何亚婷,杨智杰. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10): 1138-1148.
[6] 张勇,史学正,于东升,王洪杰,赵永存,孙维侠. 属性数据与空间数据连接对土壤有机碳储量估算的影响[J]. 地球科学进展, 2008, 23(8): 840-847.
[7] 孙波,潘贤章,王德建,韩晓增,张玉铭,郝明德,陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008, 23(11): 1201-1208.
[8] 陈庆强,孟翊,周菊珍,顾靖华,胡克林. 长江口盐沼滩面发育对有机碳深度分布的制约[J]. 地球科学进展, 2007, 22(1): 26-32.
[9] 孟磊;丁维新;蔡祖聪;钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响[J]. 地球科学进展, 2005, 20(6): 687-692.
[10] 于贵瑞;王绍强;陈泮勤;李庆康. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
[11] 梁文举;张晓珂;姜勇;孔垂华. 根分泌的化感物质及其对土壤生物产生的影响[J]. 地球科学进展, 2005, 20(3): 330-337.
[12] 周莉;李保国;周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.
[13] 吴金水;童成立;刘守龙. 亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应[J]. 地球科学进展, 2004, 19(1): 131-137.
[14] 潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4): 609-618.
阅读次数
全文


摘要