地球科学进展 ›› 2004, Vol. 19 ›› Issue (1): 131 -137. doi: 10.11867/j.issn.1001-8166.2004.01.0131

全球变化研究 上一篇    下一篇

亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应
吴金水;童成立;刘守龙   
  1. 中国科学院亚热带农业生态研究所,湖南 长沙 410125
  • 收稿日期:2002-12-12 修回日期:2003-06-18 出版日期:2004-01-20
  • 通讯作者: 吴金水(1961-),男,湖北武穴人,研究员,主要从事土壤有机碳循环与计算机模拟研究. E-mail:E-mail:jswu@isa.ac.cn
  • 基金资助:

    国家杰出青年科学基金项目“土壤有机质循环与优化管理”(编号:49925102);国家自然科学基金重点项目“我国亚热带典型稻田生态系统碳循环过程与模拟”(编号:40235057);国家重点基础研究发展规划项目“陆地生态系统碳循环动力学机制与模型”(编号:2002CB412503)联合资助

RESPONSES OF SOIL ORGANIC CARBON TO GLOBAL CLIMATE CHANGES IN CULTIVATED SOILS IN THE SUBTROPICAL AND THE LOESS PLATEAU REGIONS

WU Jinshui, TONG Chengli, LIU Shoulong   

  1. Institute of Subtropical Agricultural, the Chinese Academy of Sciences, Changsha  410125, China
  • Received:2002-12-12 Revised:2003-06-18 Online:2004-01-20 Published:2004-02-01

采用计算机模拟方法研究了我国亚热带和黄土高原地区耕作土壤有机碳状况及其对全球气候变化的响应。结果表明,在新鲜有机质输入相同的情况下,亚热带地区的耕作土壤(0~20 cm)有机碳积累量比北温带地区大约低50%,黄土高原地区的耕作土壤有机碳积累量略高于北温带。预测到2050年气温升高 1.5~3℃,而其它条件不变的情况下,亚热带地区和黄土高原地区的耕作土壤有机碳积累水平将分别下降 5.6%~10.9%和 3.6%~9.4 %。在保证化肥使用量不变的同时增加有机肥投入,亚热带地区的稻作土壤和黄土高原地区的旱作土壤的有机碳含量都表现出逐步增加的趋势,且大于同期因气温升高所造成的不利影响。

Global climatic changes have been world widely concerned, particularly the continuous rise of atmospheric temperature, mainly due to the increase in CO2  concentration in the atmosphere. The release of soil organic C during the past century (e.g. due to deforest) has been considered as one of the main source of atmospheric CO2 . It is predicted that, assuming that the global temperature rise by 0.03℃ annually by 2050, about 7% of soil organic C (equivalent to 61×1015g C accumulated in world soil) would release as CO2  into atmosphere. However, information on the responses of soil organic C to climatic changes in different regions shows a lack in many parts of the world, although such information are important knowledge in maintaining soil organic C and fertility in the regions.
This paper reports a study of the present trend of organic C in cultivated soils in the subtropical (with warm and moist conditions) and semi-arid (the Loess Plateau) regions in China and the response to global climatic changes, based on predictions using a model (SCNC) recently developed for simulating the turnover of organic matter and nitrogen in cultivated soils in China. The model was tested by data from long-term field experiments in these regions and Rothamsted, UK. Soil management to remedy the detrimental effects of climatic changes on the accumulation of organic C was also discussed.
The model predicted that, when the amounts of fresh organic material input and soil clay content are the same, the stock of soil organic C at the equilibrium was 50% smaller in the subtropical region than that in moist temperate zones (using Rothamsted in UK as the representative), whist the amount in the semi-arid region was slightly larger. Because multi-cropping systems in the subtropical region have resulted in the high input rates of fresh organic materials (e.g. crop residues), the amounts of organic C accumulated can consequently maintain generally larger than that in the Loess Plateau region where the input rates of fresh organic materials are generally low, due to the low productivity of crops. Assuming atmospheric temperature rises at the gradients of 1.5 and 3℃ by 2050 (equivalent to annually mean rises of 0.03℃ and 0.06℃, respectively), and fresh organic material input maintains steady, the amounts of soil organic C would decrease by 5.6%~10.9% in the subtropical region and 3.6% ~ 9.4% in the semi-arid region. The percentages of decreases were dependent on the present amounts of soil organic C, and were slightly smaller than that predicted for moist temperate zones e.g.  5.1%~10.3% for Rothamsted soils). When 40% ~ 60% of crop straw produced incorporates into the soils, the amount of organic C in these regions can increase by over 40% by 2050. Thus, it is proposed that increasing the incorporation of crop residues and manure is essential for maintaining the pool of soil organic C in the regions.

中图分类号: 

[1]IPCC. Technical Guidelines for Assessing Climate Change Impacts and Adaptations[M]. 1995.
[2]Guo Liping(郭李萍), Lin Erda(林而达). Research advances on mitigating global warming and greenhouse gas sequestration[J]. Advance in Earth Sciences(地球科学进展), 1999,14(4): 384-390(in Chinese).
[3]IPCC. The carbon cycle and atmospheric carbon dioxide[A]. In:Climate Change 2001: The Scientific Basis[C]. Cambridge: Cambridge University Press,185237.
[4]Schleisinger W H. Evidence from chronosequence studies for a low carbon storage potential of soils[J]. Nature, 1990, 348: 232-234.
[5]Eswaran H E, Van Den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 1993, 57: 192-194.
[6]Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.
[7]Jenkinson D S, Adams D E and Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351: 304-306.
[8]Chen Qingqiang(陈庆强), Shen Chengde(沈承德), Yi Weixi(易惟熙), et al. Progresses in soil carbon cycle researches[J]. Advance in Earth Sciences(地球科学进展), 1998, 13(6): 555-563(in Chinese)
[9]Kirschbaum Miko U F. The temperature dependence of soil organic matter decomposition, and effect of global warming on soil C storage[J]. Soil Biology and Biochemistry, 1995, 27: 753-760.
[10]Stallard R F. Terrestrial sedimentation and the carbon cycle: coupling weather and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12: 231-257.
[11]Steffen W, Noble I, Canadell J,et al. The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280: 1 393-1 394.
[12]Cao Mingkui and Woodward F Ian. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 393: 249-252.
[13]Schimel D, Enting I G, Heimann M,et al. CO2 and carbon cycles[A]. In: Houghton J T, et al. eds. Climate Change[C]. Cambridge: Cambridge University Press, 1995. 35-71.
[14]Jenkinson D S, Hart P B S, Rayner J H,et al. Modelling the turnover of organic matter in longterm experiment at Rothsmsted[A]. In: June H Cooley ed. Soil Organic Matter Dynamic and Soil Productivity[C]. Athens, Ga, USA, Intercol. Bulletin, 1987, 15: 1-8.
[15]Parton W J, Schimel D S, Cole C V. Dynamics of C, N, P and S in grassland soils: A model[J]. Biogeochemistry, 1988, (5): 109-131.
[16]Smith P, Smith J U, McGill D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven longterm experiments[J]. Geoderma, 1997, 81: 153-225.
[17]Gijsman A J, Oberson A, Tiessen H, et al. Limited applicability of the CENTURY model to highly weathered tropical soils[J]. Agronomy Journal, 1996, 88: 894-903.
[18]Wu J, O'Donnell A G,  Syers J K, et al. Modelling soil organic matter changes in leyarable rotations in sandy soils of Northeast Thailand[J]. European Journal of Soil Science, 1998, 49: 463-470.
[19]Wu Jinshui(吴金水),Xiao Heai(肖和艾). The cycling of soil organic matter and the prediction of the changes in its contents[A]. In: Ou Ximan(欧细满),ed. Soil Sciences towards the 21 Century (Hunan)[C]. Changsha: Hunan Science and Technology Press, 1999.69-74(in Chinese).
[20]Wu Jinshui(吴金水), Tong Chengli(童成立), Liu Ziyong(刘子勇),et al. Studies on computer simulation of soil organic carbon cycling: The development and application of a new model[A]. In: Hunan Soil and Fertilizer Association(湖南省土壤肥料学会) ed. Soil Sciences and Sustainable Development of Agriculture[C]. Changsha: Hunan Map Press, 2001.80-83(in Chinese).
[21]Jenkinson D S. Studies on the decomposition of  14C labelled organic matter in soil[J]. Soil Science, 1971, 111:64-70.
[22]Shi Yafeng(施雅风). Features and tendency of global warming and its implications for China[J]. Journal of Natural Disasters(自然灾害学报), 1996, 5(2): 1-10(in Chinese).
[23]Schimel D S, Braswell B H, Holland E, et al. Climate, edaphic, and biotic controls over storage and turnover of carbon in soil[J]. Global Biogeochemical Cycles, 1994, 8(3): 279-293.
[24]Huang Yao(黄耀), Liu Shiliang(刘世梁), Shen Qirong(沈其荣), et al. Model establishment for simulating soil organic carbon dynamics[J]. Scientia Agricultura Sincia(中国农业科学), 2001, 34(5): 532-536(in Chinese).
[25]Trumbore Susan E. Potential responses of soil organic carbon to global environmental change[J]. Proceedings of the National Academy of Sciences, USA, 1997, 94: 8 284-8 291.
[26]Wu Jinshui(吴金水). Soil organic matter and the dynamic in its turnover[A]. In: He Dianyuan(何电源),ed. Soil Fertility and Fertilization for Cultivated Plants in Southern China[C]. Beijing: Science Press, 1994. 28-62(in Chinese).
[27]Lin Xinxiong(林心雄). The characteristics of organic matter and its management in China[A]. In: Shen Shanmin(沈善敏),ed. Soil Fertility in China[C]. Beijing: Chinese Agricultural Press, 1998.109-159(in Chinese).

[1] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[2] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[3] 任国玉, 任玉玉, 李庆祥, 徐文慧. 全球陆地表面气温变化研究现状、问题和展望[J]. 地球科学进展, 2014, 29(8): 934-946.
[4] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.
[5] 邬建国, 何春阳, 张庆云, 于德永, 黄甘霖, 黄庆旭. 全球变化与区域可持续发展耦合模型及调控对策[J]. 地球科学进展, 2014, 29(12): 1315-1324.
[6] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
[7] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[8] 刘小茜,王仰麟,彭建. 人地耦合系统脆弱性研究进展[J]. 地球科学进展, 2009, 24(8): 917-928.
[9] 肖胜生,董云社,齐玉春,彭琴,何亚婷,杨智杰. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10): 1138-1148.
[10] 申彦波,赵宗慈,石广玉. 地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展[J]. 地球科学进展, 2008, 23(9): 915-924.
[11] 张勇,史学正,于东升,王洪杰,赵永存,孙维侠. 属性数据与空间数据连接对土壤有机碳储量估算的影响[J]. 地球科学进展, 2008, 23(8): 840-847.
[12] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[13] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[14] 孙波,潘贤章,王德建,韩晓增,张玉铭,郝明德,陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008, 23(11): 1201-1208.
[15] 刘满强,陈小云,郭菊花,李辉信,胡锋. 土壤生物对土壤有机碳稳定性的影响[J]. 地球科学进展, 2007, 22(2): 152-158.
阅读次数
全文


摘要