地球科学进展 ›› 2008, Vol. 23 ›› Issue (5): 448 -456. doi: 10.11867/j.issn.1001-8166.2008.05.0448

探索与争鸣 上一篇    下一篇

对我国西南地区河谷深厚覆盖层成因机理的新认识
许强,陈伟,张倬元   
  1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2008-04-12 修回日期:2008-04-14 出版日期:2008-05-10
  • 通讯作者: 许强 E-mail:xq@cdut.edu.cn

New Views on Forming Mechanism of Deep Overburden on River Bed in Southwest of China

Xu Qiang,Chen Wei,Zhang Zhuoyuan   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China
  • Received:2008-04-12 Revised:2008-04-14 Online:2008-05-10 Published:2008-05-10

近年来,在我国水能资源开发过程中,发现各河流现代河床以下普遍堆积厚达数十米甚至上百米的松散堆积物。河谷深厚覆盖层的存在,不仅严重制约了工程坝址的选择,影响相关流域水电资源的开发利用,也给坝工设计带来巨大的困难。由于深厚覆盖层埋藏于现代河床之下,其形成年代一般先于一二级阶地,有悖于河流发育演化的常理,其成因一直令人费解。首次将河谷深切和深厚堆积事件与全球气候变化、海平面升降运动、地壳运动等有机地联系起来,并提出冰期、间冰期全球海平面大幅度升降,是导致河流深切成谷并形成深厚堆积的主要原因的新观点。在此基础上,引入层序地层学原理,从理论上较好地解释了全球气候变化导致海平面和河流侵蚀基准面大幅变化,并产生河谷深切和深厚堆积的原因和过程。最后,进一步将沿河大型古滑坡的孕育和发生与河谷深切事件相联系,提出沿河大型古滑坡是在河谷深切期因前缘临空较好而形成的新观点,从而对沿河古滑坡前缘剪出口高程往往低于现代河床数十米的原因给出了较合理的解释。

Recently, widespread thick ranging from 10 to even 100 meters loose accumulations were found below modern rivers bed during China's hydropower resources development process. Deep overburden on river bed not only seriously hampers the dam site selection, impacts correlation basin hydropower resources development and exploit, but also brings enormous difficulties to dam engineering design. Because deep overburden is buried under modern river bed and its formation ages priors to the first and second terrace, this phenomenon is contrary to common sense of the river evolution, so its causes have been confused. Deeply cut valley and deep accumulation events, global climate change, sea-level eustacy motion and crustal movement organically linked up are reported for the first time in this paper. The author points out a new viewpoint that global sea level greatly change during ice age and interglacial stage is the main reason that causes deep river valley and forms deep accumulation. On this basis, this paper explain that global climate change result in sea level and erosion basis considerable growth, and causes and processing of production deeply cut valley and deep accumulation by applying the principle of sequence stratigraphy. Finally, this article further related large ancient landslides preparation and occurence along river and deeply cut valley events. The author propose a new perspective that along river large ancient landslides were formed by front free face better in the deeply cut valley period. Therefore, these new views provided a reasonable explanation on the elevation of landslide front shear opening below the modern river bed over 10 meters.

中图分类号: 

[1] Wang YunshengHuang RunqiuDuan Haipenget al. An intensive erosion event in the last glaciation in the west of China [J]. Journal of Chengdu University of TechnologyScience & Technology Edition),2006331:73-76.[王运生,黄润秋,段海澎,等. 中国西部末次冰期一次强烈的侵蚀事件[J]. 成都理工大学学报:自然科学版,2006331:73-76.]

[2] Luo Shoucheng. Cognition of geological problems of thick overburden layer [J]. Water Power1995,(4:21-25.[罗守成. 对深厚覆盖层地质问题的认识[J]. 水力发电,1995,(4:21-25.]

[3] Yang DayuanLai Lianying. Study on the origin of the deep troughs at the Three Gorges reaches of the Yangtze [J]. Mountain Research1992103:141-147.[杨达源,赖莲英.试论长江三峡河段深槽的成因[J]. 山地研究,1992103:141-147.]

[4] Cao GuangjieWang JianQu Guixian. An overview of the research on channel evolution in the Yangtze river mouth region since the last glacial maximum [J]. Advances in Earth Science20062110:1 039-1 045.[曹光杰,王建,屈贵贤. 末次盛冰期以来长江河口段河道演变研究综述[J]. 地球科学进展,20062110:1 039-1 045.]

[5] Ma GuoyanWang XiyanLi Hongxuneds. The Engineering Geology of the Lower Yellow River Course and the Quaternary Erosion of the Middle Yellow River [M]. Zhengzhou: Yellow River Water Resources Press1997.[马国彦,王喜彦,李宏勋编著. 黄河下游河道工程地质及淤积物物源分析[M]. 郑州:黄河水利出版社,1997.]

[6] Lu ShenwuRen Dechang. A review on “Research on Building Dam on Thick Overburden” [J]. Sichuan Water Power1986,(4: 11-21.[鲁慎吾,仁德昌. “深厚覆盖层建坝研究成果综述[J]. 四川水力发电,1986,(4: 11-21.]

[7] Yang Tianjun. Classification of deep and thick overlying rock group and their main engineering geological problems [J]. Water Power1998,(6:17-20.[杨天俊. 深厚覆盖层岩组划分及主要工程地质问题[J]. 水力发电,1998,(6:17-20.]

[8] Meng Yongxu. The engineering characteristics of thick overburden layer at dam site of Xiabandi reservoir and a preliminary evaluation of the main engineering geological problems [J]. Shan’xi Water Resources and Hydropower Engineering2000,(2:48-51.[孟永旭. 下坂地水库坝址深厚覆盖层工程特性及主要地质问题初步评价[J]. 陕西水利水电技术,2000 2:48-51.]

[9] Feng Jianming. The thick overburden layer exploratio practice in the gate site of Tianwan river power station [J]. Sichuan Water Power2001203:77-83.[冯建明. 田湾河大发电站闸址深厚覆盖层勘探的实践[J]. 四川水力发电,2001203:77-83.]

[10] Chen HaijunRen GuangmingNie Dexinet al. Study on engineering geologic characteristic of the deep alluvium in vallys and its evaluation methods [J]. Geological Hazards and Eniveronment Preservation199674:53-59.[陈海军,任光明,聂德新,等. 河谷深厚覆盖层工程地质特性及其评价方法研究[J]. 地质灾害与环境保护,199674:53-59.]

[11] Wang LanshengYang LizhengWang Xiaoqunet al. Discovery of huge ancient dammed lake on upstream of Minjiang River in SichuanChina [J]. Journal of Chengdu University of TechnologyScience & Technology Edition),2005321:1-11.[王兰生,杨立铮,王小群,等.岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报:自然科学版,2005321:1-11.]

[12] Li Tingdong. The uplifting process and mechanism of the Qinhai-Tibet plateau[J]. Acta Geosicientia Sinica19951:1-9.[李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报,19951:1-9.]

[13] Fu RongshanLi LigangHuang Jianhuaet al. Three-step model of the Qinghai-Tibet plateau uplift [J]. Chinese Journal of Sinica1999425:609-616.[傅容珊,李力刚,黄建华,等. 青藏高原隆升过程的三阶段模式[J]. 地球物理学报,1999425:609-616.]

[14] Ma RunyongPeng JianbingXi Xianwuet al. Mechanism of progressive uplift of Qinghai-Tibet plateau [J]. Advances in Earth Science200419suppl.:41-45.[马润勇,彭建兵,席先武,等. 青藏高原的递进式隆升机制[J]. 地球科学进展,200419(增刊):41-45.]

[15] Li Dewei. A new model for uplifting mechanism of Qinghai-Tibet plateau [J]. Earth Science-Journal of China University of Geosciences2003286:593-599.[李德威.青藏高原隆升机制新模式[J]. 地球科学——中国地质大学学报,2003286:593-599.]

[16] Ge YonggangWei Mingjian. The summarizing of progresses in the study of Qinghai-Tibet plateau's uplift [J]. Journal of Capital Normal UniversityNatural Science Edition),200425special issue: 128-136.[葛永刚,魏明建. 青藏高原隆升综合研究[J]. 首都师范大学学报:自然科学版,200425(专辑):128-136.]

[17] Xiao XuchangWang Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet plateau [J]. Geological Review1998444:372-381.[肖序常,王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论评,1998444:372-381.]

[18] Ma ZongjinZhang JiashengWang Yipeng. The 3-d deformational movement episodes and neotectonic domains in the Qinghai-Tibet plateau [J]. Acta Geologica Sinica1998723:211-227.[马宗晋,张家声,汪一鹏. 青藏高原三维变形运动学的时段划分和新构造分区[J]. 地质学报,1998723:211-227.]

[19] Zhong DalaiDing Lin. The discuss mechanism and uplift process of Qinghai-Tibet plateau [J]. Science in ChinaSeries D),1996264:289-295.[钟大赉,丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学:D辑,1996264:289-295. ]

[20] Yang HuairenWang Jian. Quaternary transgressions and coastlinechanges in Huanghe riverYellow river delta [J]. Marine Geology & Quaternary Geology1990103:1-14.[杨怀仁,王建. 黄河三角洲地区第四纪海进与岸线变迁[J]. 海洋地质与第四纪地质,1990103:1-14. ]

[21] Zhu YongqiLi ChengyiZeng Chengkaiet al. On the lowest sea surface of the continental shelf of the east China sea of late pleistocene [J]. Chinese Science Bulletin1979,(7:317-320.[朱永其,李承伊,曾成开,等. 关于东海大陆架晚更新世最低海面[J]. 科学通报,1979,(7:317-320. ]

[22] Yan YuzhongWang HongLi Fenglinet al. Sedimentary environment and sea-level fluctuations revealed by Borehole BQ1 on the west coast of the Bohai bay [J]. Geological Bulletin of China2006253:357-382.[阎玉忠,王宏,李凤林,等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报,2006253:357-382. ]

[23] Wang JingtaiWang Pinxian. Relationship between Sea-level changes and climatic fluctuations in east China since late pleistocene [J]. Acta Geographica Sinica1980354:299-311.[王靖泰,汪品先.中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报,1980354:299-311.]

[24] Cao GuangjieWang JianQu Guixian. Formation & sedimentary characteristics of the Yangtze river incised-Valley in Nanjing [J]. Journal of Henan UniversityNatural Science),2006361:66-69.[曹光杰,王建,屈贵贤. 南京长江大桥附近长江古河谷的形成及沉积特征[J]. 河南大学学报:自然科学版,2006361:66-69.]

[25] Zhang GuijiaLi Congxian. Land-ocean interaction in qiantangjiang estuarine area since last glaciation [J]. Marine Science Bulleten1996152:43-49.[张桂甲,李从先. 冰后期钱塘江河口湾地区的海陆相互作用[J]. 海洋通报,1996152:43-49.]

[26] Zhang CuipingJiang NaiqianHou Suzhenet al. The cause analysis of the river channel sedimentation in the downstream of recent weihe river [J]. Yellow River2006286:75-79. [张翠萍,姜乃迁,侯素贞,等. 近期渭河下游河道淤积成因分析[J]. 人民黄河,2006286:75-79. ]

[27] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation [C]Proceedings of Northwestern European Sequence Stratigraphy Congress1994: 105-123.

[28] Zhang NianxueLi XiaoLi Shouding. The new viewpoints of qurer and crustal movementvalley deep trough and palaeofloodfrom Fengjie county to Yunyang county in Three Gorges reservoir area [J]. Quaternary Sciences2005256:686-699.[张年学,李晓,李守定. 三峡库区奉节——云阳的低阶地与地壳运动、河谷深槽与古洪水的新解释[J].第四纪研究,2005256:686-699.]

[1] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[2] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[3] 戴璐. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11): 1147-1156.
[4] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[5] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[6] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[7] 任国玉, 任玉玉, 李庆祥, 徐文慧. 全球陆地表面气温变化研究现状、问题和展望[J]. 地球科学进展, 2014, 29(8): 934-946.
[8] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.
[9] 邬建国, 何春阳, 张庆云, 于德永, 黄甘霖, 黄庆旭. 全球变化与区域可持续发展耦合模型及调控对策[J]. 地球科学进展, 2014, 29(12): 1315-1324.
[10] 汪正江,许效松,杜秋定,杨菲,邓奇,伍皓,周小琳. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展, 2013, 28(4): 477-489.
[11] 刘冰,靳鹤龄,孙忠,苏志珠,张彩霞. 青藏高原东北部共和盆地风成沉积地球[J]. 地球科学进展, 2012, 27(7): 788-799.
[12] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[13] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[14] 刘小茜,王仰麟,彭建. 人地耦合系统脆弱性研究进展[J]. 地球科学进展, 2009, 24(8): 917-928.
[15] 周天军,满文敏,张洁. 过去千年气候变化的数值模拟研究进展[J]. 地球科学进展, 2009, 24(5): 469-476.
阅读次数
全文


摘要