[1] IPCC. Third Assessment Report: Climate Change 2001[M]. Cambridge: Cambridge University Press, 2001. [2] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plain Grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1 173-1 179. [3] Paul K I, Polgase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168: 241-257. [4] Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes[J]. Global Change Biology, 2003, 9: 1 204-1 213. [5] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36. [6] Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277: 504-509. [7] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycle, 1994, 8: 279-293. [8] Bernoux M, Cerri C C, Neill C, et al. The use of stable carbo isotopes for estimating soil organic matter turnover rates[J]. Geoderma, 1998, 82: 43-58.[9] Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics[J]. Ecological Application, 2000, 10(2): 399-411. [10] Zhao Qiguo. Development and innovation of modern soil science[J]. Acta Pedologica Sinica, 2003, 40(3): 321-327.[赵其国. 发展与创新现代土壤科学[J].土壤学报, 2003, 40(3): 321-327.] [11] de Camargo P B, Trumbore S, Martinelli L, et al. Soil carbon dynamics in regrowing forest of eastern Amazonia[J]. Global Change Biology, 1999, 5: 693-702. [12] Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ 13C along a moisture gradient in Botswana[J]. Global Change Biology, 2004, 10: 342-349. [13] Wang Y, Hsieh Y. Uncertainties and novel prospects in the study of the soil carbon dynamics[J]. Chemosphere, 2002, 49: 791-804. [14] Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle process[J]. Ecological Application, 2000, 10: 412-422. [15] Ciais P, Tans P P, Trolier M, et al. A large norther hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2[J]. Science, 1995, 269: 1 098-1 102. [16] Buchmann N, Kaplan J O. Carbon isotope discrimination of terrestrial ecosystems—How well do observed and modeled results match?[A].In: Schulze E , Heimann M , Harrison S,eds.Global Biogeochemical Cycles in the Climate System[C]. California, USA:Academic Press, 2001. 253-266. [17] Trolier M, White J W C, Tans P P, et al. Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network[J]. Journal of Geophysical Research, 1996, 101: 25 897-25 916. [18] Farquhar G D, Ehleringer J R, Hubick K Y. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537. [19] Enting I G, Trudinger C M, Francy R J. A synthesis inversion of the concentration and δ13C of atmospheric CO2[J]. Tellus,1995, 47B:35-52. [20] Buchmann N, Brooks J R, Flanagan L B, et al. Carbon isotope discrimination of terrestrial ecosystems[A]. In: Griffiths H ed. Stable Isotope, Integration of Biological, Ecological and Geochemical Processes[C]. Oxford: BIOS Scientific Publishers Ltd, 1998. 203-222. [21] Flanagan L B, Ehleringer J R. Ecosystem-atmosphere CO2 exchange: Interpreting signals of change using stable isotope ratios[J]. Trends Ecology, Evolution, 1998, 13: 10-14. [22] Buchmann N, Ehleringer J R. CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies[J]. Agricultural and Forest Meteorology, 1998, 89: 45-58. [23] Leavitt S W, Pendall E, Paul E A, et al. Stable-carbon isotopes and soil organic carbon in wheat under CO2 enrichment[J]. New Phytologist, 2001, 150: 305-314. [24] Boutton T W, Archer S R, Midwood A J, et al. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma, 1998, 82: 5-41. [25] Skjemstad J O, Le Feuvre R P, Prebbie R E. Turnover of soil organic matter under pasture as determined by 13C abundance[J]. Australian Journal of Soil Science, 1990, 28: 267-276. [26] Nadelhoffer K J, Fry B. Controls on natural nitrogen-15 and carbon-13 abundances in forests soil organic matter[J]. Soil Science Society of America Journal, 1988, 52: 1 633-1 640. [27] Wang Guoan. Application of stable carbon isotope for paleoenvironmental research[J]. Quaternary Sciences, 2003, 23(5): 472-484.[王国安.稳定碳同位素在第四纪古环境研究中的应用[J].第四纪研究,2003, 23(5): 472-484.] [28] Piao Hechun, Zhu Jianming, Yu Dengli, et al. Carbon isotope composition in soil microbial biomass and organic carbon isotope effect[J]. Quaternary Sciences, 2003, 23(5): 546-556.[ 朴河春, 朱建明, 余登利,等.贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应[J]. 第四纪研究, 2003, 23(5): 546-556.] [29] Balesdent J , Mariotti A. Measurement of soil organic matter turnover using 13C natural abundance[A].In: Boutton T W , Yamasaki S-I, eds. Mass Spectrometry of Soils[C]. New York, USA: Marcel Dekker Inc, 1996. 83-111. [30] Tieszen L L, Reed B C, Bliss N B, et al. NDVI, C3 and C4 production, and distribution in Great Plain grassland land cover classes[J]. Ecological Applications, 1997, 7: 59-78. [31] Bird M I, Haberle S G, Chivas A R. Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea[J]. Global Biogeochemical Cycles, 1994, 8: 13-22. [32] Wang Luo, Lü Houyuan, Wu Naiqin, et al. Altitudinaltrends of stable carbon isotope composition for Poeceae in Qinghai-Xizang plateau[J]. Quaternary Sciences, 2003, 23(5): 573-580.[ 旺罗, 吕厚远, 吴乃琴,等. 青藏高原现生禾本科植物的δ13C与海拔高度的关系[J]. 第四纪研究, 2003, 23(5): 573-580.] [33] Desjardins T, Andreux F, Volkoff B, et al. Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia[J]. Geoderma, 1994, 61: 103-118. [34] Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63: 621-626. [35] Desjardins T. Variation de la distribution de la matiere organique (Carbone total et 13C) dans les sols ferrallitiques du Bresil. Modifications consecutives a la deforestation et a la mise en culture en Amazonie orientale[D]. Nancy: University of Nancy I, 1991. [36] Feigl B J, Melillo J, Cerri C C. Changes in the origin and quality of soil organic matter after pasture introduction in Rondonia (Brazil) [J]. Plant and Soil, 1995, 175: 21-29. [37] Balesdent J, Guillet B. Les datations par le 14C des matieres organiques des soils[J]. Soil Science, 1982, 2: 93-112. [38] Fung I, Field C B, Berry J A, et al. Carbon 13 exchanges between the atmosphere and the biosphere[J]. Global Biogeochemical Cycles, 1997, 39: 80-88. [39] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1: 77-91. [40] Cerling T E. The stable isotope composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71: 229-240. [41] Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbon-dating method of analysis to soil humus studies[J]. Soil Science, 1967, 104: 217-224. [42] Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia[J]. Global Biogeochemical Cycles, 1995, 9: 515-528. [43] Christensen B T. Physical fractionation of soil and organic matter in primary particles and density separates[J]. Advances in Soil Science, 1992, 20: 2-90. [44] Jiang Gaoming, Huang Yinxiao, Wan Guojiang. The study on the δ13C values tree ring on the indicative function in reveal atmosphere CO2 changes in north China[J]. Acta Phytoecologica Sinica, 1997, 21(2): 155-160. [蒋高明, 黄银晓, 万国江.树木年轮δ13C值及其对我国北方大气CO2浓度变化的指示意义[J]. 植物生态学报, 1997, 21(2): 155-160.] [45] Hou Aimin, Peng Shaolin, Zhou Guoyi, et al. Re-examine the reliability of tree-ring isotope ratios in the reconstruction of atmospheric CO2 isotope ratio variation[J]. Chinese Journal of Ecology, 2001, 20(1): 13-17.[侯爱敏, 彭少麟, 周国逸,等. 通过树木年轮δ13C重建大气CO2碳同位素比δa的可靠性探讨[J]. 生态学杂志, 2001, 20(1): 13-17.] [46] Jiang Wenying, Han Jiamao, Liu Dongsheng. Aridification and its influence on carbon isotope composition of pedogenic carbonate[J]. Quaternary Sciences, 2001, 21(5): 461.[姜文英, 韩家懋, 刘东生. 干旱化对成土碳酸盐碳同位素组成的影响[J]. 第四纪研究, 2001, 21(5): 461.] [47] Piao Hechun, Liu Qiming, Yu Dengli, et al. Origins of soil organic carbon with the method of natural 13C abundance in maize fields[J]. Acta Ecologica Sinica, 2001, 21(3): 433-439.[ 朴河春, 刘启明, 余登利,等.用天然13C丰度法去评估贵州茂兰喀斯特森林区玉米地土壤中有机碳的来源[J]. 生态学报, 2001, 21(3): 433-439.] [48] Shen Chengde, Sun Yanmin, Yi Weimin, et al. Carbon isotope traces for the restoration of degenerated forest ecosystem[J].Quaternary Sciences, 2001, 21(5): 452-460. [沈承德, 孙彦敏, 易惟熙,等. 退化森林生态系统恢复过程的碳同位素示踪[J]. 第四纪研究, 2001, 21(5): 452-460.] [49] Su Bo, Han Xingguo, Li Linghao, et al. Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of northeast China transect[J]. Acta Phytoecologica Sinica, 2000, 24(6): 648-655. [苏波, 韩兴国, 李凌浩,等. 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6): 648-655.] [50] Wang Yonji, Lü Houyuan, Wang Guoan, et al. C3/C4 plants and carbon isotope analysis of carbonate in modern soils[J]. Chinese Science Bulletin, 2000, 45(9): 978-981.[王永吉, 吕厚远, 王国安,等. C3、C4植物和现代土壤中硅酸盐碳同位素分析[J]. 科学通报, 2000, 45(9): 978-981.] [51] Yan Changrong, Han Xingguo, Chen Lingzhi, et al. 13C at Natural abundance levels in the broad-leaved deciduous forest in the warm-temperate region of China: Their δ13C values and ecological significance[J]. Acta Ecologica Sinica, 2002, 22(12):2 164-2 166.[严昌荣, 韩兴国, 陈灵芝,等. 中国暖温带落叶阔叶林中某些树种的13C自然丰度:δ13C值及其生态学意义[J]. 生态学报, 2002, 22(12): 2 164-2 166.] [52] Jackson R B, Schenk H J, Jo bbágy E G, et al. Belowground consequences of vegetation change and their treatment in models[J]. Ecological Applications, 2000, 10: 470-483. [53] Canadell J P, Pitelka L F, Ingram S I. The effects of elevated [CO2] on plant-soil carbon below-ground: A summary and synthesis[J]. Plant and Soil, 1996, 187: 391-400. [54] Metting F B, Smith J L, Amthor J S, et al. Science needs and new technology for increasing soil carbon sequestration[J]. Climatic Change, 2001, 51: 11-34. |