地球科学进展 ›› 2005, Vol. 20 ›› Issue (5): 568 -577. doi: 10.11867/j.issn.1001-8166.2005.05.0568

生态学研究 上一篇    下一篇

碳同位素技术在土壤碳循环研究中的应用
于贵瑞 1;王绍强 1;陈泮勤 2;李庆康 1   
  1. 1.中国科学院地理科学与资源研究所,北京 100101;2.中国科学院资源与环境科学技术局,北京 100864
  • 收稿日期:2004-06-16 修回日期:2004-12-01 出版日期:2005-05-25
  • 通讯作者: 于贵瑞
  • 基金资助:

    国家重点基础研究发展规划项目“中国陆地生态系统碳循环及其驱动机制研究”(编号:2002CB412501);中国科学院地理科学与资源研究所主干科学计划“中国陆地生态系统土壤碳估算”(编号:CXIOG-E02-02-02);中国科学院知识创新工程重大项目“中国陆地和近海生态系统碳收支研究”(KZCX1-SW-01-19)资助.

ISOTOPE TRACER APPROACHES IN SOIL ORGANIC CARBON CYCLE RESEARCH

YU Guirui 1; WANG Shaoqiang 1; CHEN Panqin 2; LI Qingkang 1   

  1. 1.Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing, 100101, China;  2.Bureau of Science and Technology for Resource and Environment, Beijing 100864,China
  • Received:2004-06-16 Revised:2004-12-01 Online:2005-05-25 Published:2005-05-25

碳在土壤中的储量和存储时间是陆地生态系统碳库中最大和最长的,而土地利用方式会影响到土壤碳储量及其循环周期,因此有效的土地利用管理可使土壤成为一个碳汇。土壤储存碳的过程就是土壤有机碳动态平衡的变化,因此认识土壤有机碳的动态变化是揭示土壤碳循环过程及其调控机制的重要方面。首先介绍了碳的一种稳定性同位素(13C)和放射性同位素(14C)在生态系统长期动态过程的重建(如C3/C4植被的历史格局)、土壤有机碳周转周期等方面的应用,探讨了同位素示踪技术在土壤有机碳来源、周转周期、土壤CO2通量的变化和组分区分、同位素富集等研究领域的应用,归纳了土壤碳循环研究中的基本问题,提出了未来土壤碳循环同位素示踪的主要研究方向。

Among carbon pools of terrestrial ecosystems, the soil carbon storage is the largest and has the longest resident time. Since the soil carbon storage and its cycling are affected by the land use practice, effective land use management can result in the role of soil as a carbon sink. The process of soil carbon sequestration is the change of dynamic balance of soil organic carbon (SOC), which is critical for revealing the process and regulatory mechanism of soil carbon cycle. This paper presents and summaries the application of stable and radioactive carbon isotopes (δ13C and 14C) in the regeneration of longterm carbon dynamics process of ecosystem(such as the historical pattern of C3/C4 vegetation) and in SOC cycling. The application of isotopic techniques in the studies of SOC source and cycling, soil CO2 flux change and component difference, isotopic enrichment, etc. is also discussed. In addition, the fundamental issues related to SOC dynamics are outlined and the major topics for isotopic tracer of SOC dynamics in future are proposed in the paper.

中图分类号: 

[1] IPCC. Third Assessment Report: Climate Change 2001[M]. Cambridge: Cambridge University Press, 2001.
[2] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plain Grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1 173-1 179.
[3] Paul K I, Polgase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168: 241-257.
[4] Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes[J]. Global Change Biology, 2003, 9: 1 204-1 213.
[5] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[6] Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277: 504-509.
[7] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycle, 1994, 8: 279-293.
[8] Bernoux M, Cerri C C, Neill C, et al. The use of stable carbo isotopes for estimating soil organic matter turnover rates[J]. Geoderma, 1998, 82: 43-58.[9] Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics[J]. Ecological Application, 2000, 10(2): 399-411.
[10] Zhao Qiguo. Development and innovation of modern soil science[J]. Acta Pedologica Sinica, 2003, 40(3): 321-327.[赵其国. 发展与创新现代土壤科学[J].土壤学报, 2003, 40(3): 321-327.]
[11] de Camargo P B, Trumbore S, Martinelli L, et al. Soil carbon dynamics in regrowing forest of eastern Amazonia[J]. Global Change Biology, 1999, 5: 693-702.
[12] Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ 13C along a moisture gradient in Botswana[J]. Global Change Biology, 2004, 10: 342-349.
[13] Wang Y, Hsieh Y. Uncertainties and novel prospects in the study of the soil carbon dynamics[J]. Chemosphere, 2002, 49: 791-804.
[14] Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle process[J]. Ecological Application, 2000, 10: 412-422.
[15] Ciais P, Tans P P, Trolier M, et al. A large norther hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2[J]. Science, 1995, 269: 1 098-1 102. 
[16] Buchmann N, Kaplan J O. Carbon isotope discrimination of terrestrial ecosystems—How well do observed and modeled results match?[A].In: Schulze E , Heimann M , Harrison S,eds.Global Biogeochemical Cycles in the Climate System[C]. California, USA:Academic Press, 2001. 253-266.
[17] Trolier M, White J W C, Tans P P, et al. Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network[J]. Journal of Geophysical Research, 1996, 101: 25 897-25 916.
[18] Farquhar G D, Ehleringer J R, Hubick K Y. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537.
[19] Enting I G, Trudinger C M, Francy R J. A synthesis inversion of the concentration and δ13C of atmospheric CO2[J]. Tellus,1995, 47B:35-52.
[20] Buchmann N, Brooks J R, Flanagan L B, et al. Carbon isotope discrimination of terrestrial ecosystems[A]. In: Griffiths H ed. Stable Isotope, Integration of Biological, Ecological and Geochemical Processes[C]. Oxford: BIOS Scientific Publishers Ltd, 1998. 203-222.
[21] Flanagan L B, Ehleringer J R. Ecosystem-atmosphere CO2 exchange: Interpreting signals of change using stable isotope ratios[J]. Trends Ecology, Evolution, 1998, 13: 10-14.
[22] Buchmann N, Ehleringer J R. CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies[J]. Agricultural and Forest Meteorology, 1998, 89: 45-58.
[23] Leavitt S W, Pendall E, Paul E A, et al. Stable-carbon isotopes and soil organic carbon in wheat under CO2 enrichment[J]. New Phytologist, 2001, 150: 305-314.
[24] Boutton T W, Archer S R, Midwood A J, et al. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma, 1998, 82: 5-41.
[25] Skjemstad J O, Le Feuvre R P, Prebbie R E. Turnover of soil organic matter under pasture as determined by 13C abundance[J]. Australian Journal of Soil Science, 1990, 28: 267-276.
[26] Nadelhoffer K J, Fry B. Controls on natural nitrogen-15 and carbon-13 abundances in forests soil organic matter[J]. Soil Science Society of America Journal, 1988, 52: 1 633-1 640.
[27] Wang Guoan. Application of stable carbon isotope for paleoenvironmental research[J]. Quaternary Sciences, 2003, 23(5): 472-484.[王国安.稳定碳同位素在第四纪古环境研究中的应用[J].第四纪研究,2003, 23(5): 472-484.]
[28] Piao Hechun, Zhu Jianming, Yu Dengli, et al. Carbon isotope composition in soil microbial biomass and organic carbon isotope effect[J]. Quaternary Sciences, 2003, 23(5): 546-556.[ 朴河春, 朱建明, 余登利,等.贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应[J]. 第四纪研究, 2003, 23(5): 546-556.]
[29] Balesdent J , Mariotti A. Measurement of soil organic matter turnover using 13C natural abundance[A].In: Boutton T W , Yamasaki S-I, eds. Mass Spectrometry of Soils[C]. New York, USA: Marcel Dekker Inc, 1996. 83-111.
[30] Tieszen L L, Reed B C, Bliss N B, et al. NDVI, C3 and C4 production, and distribution in Great Plain grassland land cover classes[J]. Ecological Applications, 1997, 7: 59-78.
[31] Bird M I, Haberle S G, Chivas A R. Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea[J]. Global Biogeochemical Cycles, 1994, 8: 13-22.
[32] Wang Luo, Lü  Houyuan, Wu Naiqin, et al. Altitudinaltrends of stable carbon isotope composition for Poeceae in Qinghai-Xizang plateau[J]. Quaternary Sciences, 2003, 23(5): 573-580.[ 旺罗, 吕厚远, 吴乃琴,等. 青藏高原现生禾本科植物的δ13C与海拔高度的关系[J]. 第四纪研究, 2003, 23(5): 573-580.]
[33] Desjardins T, Andreux F, Volkoff B, et al. Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia[J]. Geoderma, 1994, 61: 103-118.
[34] Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63: 621-626.
[35] Desjardins T. Variation de la distribution de la matiere organique (Carbone total et 13C) dans les sols ferrallitiques du Bresil. Modifications consecutives a la deforestation et a la mise en culture en Amazonie orientale[D]. Nancy: University of Nancy I, 1991.
[36] Feigl B J, Melillo J, Cerri C C. Changes in the origin and quality of soil organic matter after pasture introduction in Rondonia (Brazil) [J]. Plant and Soil, 1995, 175: 21-29.
[37] Balesdent J, Guillet B. Les datations par le 14C des matieres organiques des soils[J]. Soil Science, 1982, 2: 93-112.
[38] Fung I, Field C B, Berry J A, et al. Carbon 13 exchanges between the atmosphere and the biosphere[J]. Global Biogeochemical Cycles, 1997, 39: 80-88.
[39] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1: 77-91.
[40] Cerling T E. The stable isotope composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71: 229-240.
[41] Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbon-dating method of analysis to soil humus studies[J]. Soil Science, 1967, 104: 217-224.
[42] Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia[J]. Global Biogeochemical Cycles, 1995, 9: 515-528.
[43] Christensen B T. Physical fractionation of soil and organic matter in primary particles and density separates[J]. Advances in Soil Science, 1992, 20: 2-90.
[44] Jiang Gaoming, Huang Yinxiao, Wan Guojiang. The study on the δ13C values tree ring on the indicative function in reveal atmosphere CO2 changes in north China[J]. Acta Phytoecologica Sinica, 1997, 21(2): 155-160. [蒋高明, 黄银晓, 万国江.树木年轮δ13C值及其对我国北方大气CO2浓度变化的指示意义[J]. 植物生态学报, 1997, 21(2): 155-160.]
[45] Hou Aimin, Peng Shaolin, Zhou Guoyi, et al. Re-examine the reliability of tree-ring isotope ratios in the reconstruction of atmospheric CO2 isotope ratio variation[J]. Chinese Journal of Ecology, 2001, 20(1): 13-17.[侯爱敏, 彭少麟, 周国逸,等. 通过树木年轮δ13C重建大气CO2碳同位素比δa的可靠性探讨[J]. 生态学杂志, 2001, 20(1): 13-17.]
[46] Jiang Wenying, Han Jiamao, Liu Dongsheng. Aridification and its influence on carbon isotope composition of pedogenic carbonate[J]. Quaternary Sciences, 2001, 21(5): 461.[姜文英, 韩家懋, 刘东生. 干旱化对成土碳酸盐碳同位素组成的影响[J]. 第四纪研究, 2001, 21(5): 461.]
[47] Piao Hechun, Liu Qiming, Yu Dengli, et al. Origins of soil organic carbon with the method of natural 13C abundance in maize fields[J]. Acta Ecologica Sinica, 2001, 21(3): 433-439.[ 朴河春, 刘启明, 余登利,等.用天然13C丰度法去评估贵州茂兰喀斯特森林区玉米地土壤中有机碳的来源[J]. 生态学报, 2001, 21(3): 433-439.]
[48] Shen Chengde, Sun Yanmin, Yi Weimin, et al. Carbon isotope traces for the restoration of degenerated forest ecosystem[J].Quaternary Sciences, 2001, 21(5): 452-460. [沈承德, 孙彦敏, 易惟熙,等. 退化森林生态系统恢复过程的碳同位素示踪[J]. 第四纪研究, 2001, 21(5): 452-460.]
[49] Su Bo, Han Xingguo, Li Linghao, et al. Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of northeast China transect[J]. Acta Phytoecologica Sinica, 2000, 24(6): 648-655. [苏波, 韩兴国, 李凌浩,等. 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6): 648-655.]
[50] Wang Yonji, Lü Houyuan, Wang Guoan, et al. C3/C4 plants and carbon isotope analysis of carbonate in modern soils[J]. Chinese Science Bulletin, 2000, 45(9): 978-981.[王永吉, 吕厚远, 王国安,等. C3、C4植物和现代土壤中硅酸盐碳同位素分析[J]. 科学通报, 2000, 45(9): 978-981.]
[51] Yan Changrong, Han Xingguo, Chen Lingzhi, et al. 13C at Natural abundance levels in the broad-leaved deciduous forest in the warm-temperate region of China: Their δ13C values and ecological significance[J]. Acta Ecologica Sinica, 2002, 22(12):2 164-2 166.[严昌荣, 韩兴国, 陈灵芝,等. 中国暖温带落叶阔叶林中某些树种的13C自然丰度:δ13C值及其生态学意义[J]. 生态学报, 2002, 22(12): 2 164-2 166.]
[52] Jackson R B, Schenk H J, Jo bbágy E G, et al. Belowground consequences of vegetation change and their treatment in models[J]. Ecological Applications, 2000, 10: 470-483.
[53] Canadell J P, Pitelka L F, Ingram S I. The effects of elevated [CO2] on plant-soil carbon below-ground: A summary and synthesis[J]. Plant and Soil, 1996, 187: 391-400.
[54] Metting F B, Smith J L, Amthor J S, et al. Science needs and new technology for increasing soil carbon sequestration[J]. Climatic Change, 2001, 51: 11-34.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[12] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[13] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[14] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
[15] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
阅读次数
全文


摘要