地球科学进展 ›› 2005, Vol. 20 ›› Issue (5): 561 -567. doi: 10.11867/j.issn.1001-8166.2005.05.0561

全球变化研究 上一篇    下一篇

近千年全球气候变化的长积分模拟试验
刘 健 1;Hans von Storch 2;陈 星 3;Eduardo Zorita 2;王苏民 1   
  1. 1.中国科学院南京地理与湖泊研究所,湖泊沉积与环境重点实验室,江苏 南京 210008; 
    2.GKSS 研究中心海岸研究所, D-21502 Geesthacht, 德国;
    3.南京大学大气科学系,江苏 南京 210093
  • 收稿日期:2004-07-19 修回日期:2004-10-13 出版日期:2005-05-25
  • 通讯作者: 刘健
  • 基金资助:

    国家自然科学基金项目“过去300年中国东部季风区雨带进退图谱与模拟诊断”(编号:40331013)和“中国小冰期气候环境区域分异与动力学研究”(编号:40272123);中国科学院知识创新工程重要方向项目“历史时期环境变化的重大事件复原及其影响研究”(编号:KZCX3-SW-321);中国科学院南京地理与湖泊研究所创新项目“东亚水汽演变及千年尺度古气候模拟研究”(编号:CXNIGLAS-A02-06)资助.

LONG-TIME MODELING EXPERIMENT ON GLOBAL CLIMATE CHANGE FOR THE LAST MILLENNIUM

LIU Jian 1;Hans von Storch 2;CHEN Xing 3;Eduardo Zorita 2;WANG Sumin 1   

  1. 1.Key Laboratory of Lake Sedimentation and Environment,Chinese Academy of Sciences, Nanjing 210008,China;
    2.Institute for Coastal Research, GKSS Research Center, D-21502 Geesthacht, Germany;
    3.Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,China
  • Received:2004-07-19 Revised:2004-10-13 Online:2005-05-25 Published:2005-05-25

近千年全球气候变化的长积分模拟试验是全球气候模拟研究的新领域,它不仅将现代器测资料与过去代用指标序列进行了有机的衔接,而且对过去百年和年代际尺度的气候变化可进行动力学解释,探讨其主要控制因素及其导致的区域响应差异。由于这类长积分模拟对计算机技术和气候模式本身的要求较高,目前能进行这类研究的国家为数不多。重点介绍了德国马普气象研究所的全球海气耦合气候模式ECHO-G,以及利用该模式进行的千年长积分模拟试验结果。首先,应用全球120年的器测资料对模拟结果进行了检验,论证了该模型较强的气候模拟能力;其次,根据全球地表2 m气温的千年模拟结果,揭示了中世纪暖期—小冰期—20世纪暖期三段式气候变化时段,然后讨论了中世纪暖期和小冰期鼎盛期全球及中国的温度分布特点;最后根据对各控制因子的拟合分析与比较,初步揭示了近千年来的温度变化主要受太阳有效辐射的变化控制,而温室气体含量的增加对100年来温度的快速上升起着主导作用。

Long-time modeling experiment is a new research field in the global climate simulation. It can not only link present instrumental climatic data up with past proxy record series, but also explain dynamical mechanism of past centennial and decadal climate change, and discuss its main control factors and the difference of regional response. Only few countries can carry on this kind of long-time modeling experiment research at present, for it needs advanced computer technology and climate model. In this paper, the global atmosphere-ocean coupled climate model ECHO-G from Max Planck Institute for Meteorology is introduced, and the result of long-time modeling experiment for the last 1000 years is analyzed. First, the climatic simulation ability of this model has been proved by Jones 120-year global integrated instrumental data. Second, according to the surface 2 m air temperature of the millennium simulation, the three stages of the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the warming of 20th century in 1000-year climate change are shown, and the distribution characteristics of global and Chinese temperature at the maximum of MWP and the minimum of LIA are analyzed. Finally, based on fitting analysis and comparison on controlling factors, it can be seen that the change of temperature is controlled mainly by the change of effective solar radiation during the last 1000 years, while the increase of the contents of greenhouse gases plays a big role on the fast warming over the past 100 years.

中图分类号: 

[1]PAGES/IGBP, CLIVAR/WCRP. The PAGES/CLIVAR Intersection, Report of a Joint IGBP-WCRP Workshop[R]. Italy: Venice, 1994.
[2]Yang Bao, Shi Yafeng, Li Hengpeng. Some advances in climatic change over the past two millennia[J]. Advances in Earth Science, 2002,17(1):110-117.[杨保,施雅风,李恒鹏. 过去2ka气候变化研究进展[J]. 地球科学进展,2002,17(1):110-117.]
[3]Crowley T J. Causes of climate change over the past 1000 years[J]. Science, 2000,289: 270-277.
[4]Bradley R. Enhanced: 1000 years of climate change[J]. Science, 2000,288(5 470): 1 353-1 355.
[5]Jones P D, Osborn T J, Briffa K R. The evolution of climate over the last millennium[J]. Science, 2001, 292: 662-667.
[6]Bertrand C, Loutre M F, Crucifix M, et al. Climate of the last millennium: A sensitivity study[J]. Tellus, 2002,54A: 221-244.
[7]Gerber S, Joos F, Brügger P ,et al. Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2[J]. Climate Dynamics, 2003, 20: 281-299.
[8]Mann M E,Bradley R S, Hughes M K. Northern Hemisphere temperatures during the past millennium:Inferences, uncertainties, and limitations[J]. Geophysical Research Letters, 1999, 26:759-762.
[9]Jones P D, Briffa K R, Barnett T P, et al. High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures[J]. The Holocene, 1998, 8: 455-471.
[10]Briffa K R. Annual climate variability in the Holocene: Interpreting the massage of ancient trees[J]. Quaternary Science Reviews,2000,19: 87-105.[11]Shen Ji, Zhang Enlou, Xia Weilan. Records from lake sediments of the Qinghai lake to mirror climatic and environmental changes of the past about 1000 years[J]. Quaternary Sciences, 2001,21(6): 508-513.[沈吉,张恩楼,夏威岚.青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究,2001,21(6): 508-513.]
[12]Bradley R S, Hughes M K, Diaz H F. Climate in Medieval time[J]. Science, 2003,302: 404-405.
[13]Crowley T J, Lowery T S. How warm was the medieval warm period? [J].AMBIO, 2000, 29: 51-54.
[14]Hiller A, Boettger T, Kremenetski C. Medieval climatic warming recorded by radiocarbon dated alpine tree-line shift on the Kola Peninsula, Russia[J].The Holocene,2001,11: 491-497.
[15]Zhang Deer. Preliminary study on the Medieval Warm Period climate in China[J]. Quaternary Sciences, 1993,13(1): 7-15.[张德二.我国中世纪温暖期气候的初步研究[J]. 第四纪研究,1993,13(1): 7-15.]
[16]Jin Zhangdong, Shen Ji, Wang Sumin, et al. The Medieval Warm Period in the Daihai area[J]. Journal of Lake Sciences, 2002,14(3): 209-216.[金章东,沈吉,王苏民,等.岱海的“中世纪暖期”[J]. 湖泊科学,2002,14(3): 209-216.]
[17]Kreutz K J. Bipolar changes in atmospheric circulation during the Little Ice Age[J]. Science, 1997, 277(5 330): 1 294-1 298.
[18]Fischer H. Little ice age clearly recorded in northern Greenland ice cores[J]. Geophysical Research Letters, 1998, 25(10): 1 749-1 752.
[19]Qian W, Zhu Y. Little Ice Age climate near Beijing, China, inferred from historical and stalagmite records[J].Quaternary Research, 2002, 57: 109-119.
[20]Wang Shaowu, Ye Jinlin, Gong Daoyi. Climate in China during the Little Ice Age[J]. Quaternary Sciences, 1998,18(1):54-64.[王绍武, 叶瑾琳, 龚道溢.中国小冰期的气候[J]. 第四纪研究, 1998,18(1):54-64.]
[21]Wang Shaowu, Xie Zhihui, Cai Jingning, et al. Study on the change of global mean temperature during last millennium[J]. Progress in Natural Science, 2002,12(11): 1 145-1 149.[王绍武,谢志辉,蔡静宁,等.近千年全球平均气温变化的研究[J]. 自然科学进展,2002,12(11): 1 145-1 149.]
[22]Zheng Jingyun, Ge Quansheng, Fang Xiuqi. Seeing the 20th century warming from temperature changes of Winter-Half-Year in eastern China for the last 2000 years[J]. Acta Geographica Sinica, 2002,57(6): 631-638.[郑景云,葛全胜,方修琦.从中国过去2000年温度变化看20世纪增暖[J]. 地理学报,2002,57(6): 631-638.]
[23]Wang Shaowu, Zhao Zongci, Yang Bao. Dispute on the climate warming in recent years[J]. Newsletter of Climate Change, 2003,2(6): 12-14.[王绍武,赵宗慈,杨保. 近年来关于气候变暖的争议[J]. 气候变化通讯,2003,2(6): 12-14.]
[24]Bauer E, Claussen E M, Brovkin V. Assessing climate forcings of the Earth system for the past millennium[J]. Geophysical Research Letters, 2003, 31(12): 1 276-1 292.
[25]Luo Yong, Wang Shaowu, Dang Hongyan, et al. Advances in climate models and model intercomparison project during the last 20 years[J]. Advances in Earth Science, 2002,17(3):372-377.[罗勇,王绍武,党鸿雁,等. 近20年来气候模式的发展与模式比较计划[J]. 地球科学进展,2002,17(3):372-377.][26]Cubasch U, Voss R. The influence of total solar irradiance on climate[J]. Space Science Reviews, 2000,94: 185-198.
[27]Cubasch U, Hegerl G C, Voss R, et al. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate[J]. Climate Dynamics, 1997, 13: 757-767 .
[28]Legutke S, Voss R. The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G. Technical Report No.18[R]. Hamburg, Germany:German Climate Computer Center(DKRZ), 1999.
[29]Roeckner  E , Arpe K, Bengtsson L, et al. The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institut für Meteorologie, Report No. 218[R]. Germany: Hamburg, 1996.
[30]Wolff J O, Reimer E M, Legutke S. The Hamburg Ocean Primitive Equation Model HOPE. Technical Report No.13[R]. Hamburg, Germany:German Climate Computer Center(DKRZ), 1997.
[31]Raible  C , Luksch U, Fraedrich K, et al. North Atlantic decadal regimes in a coupled GCM simulation[J]. Climate Dynamics, 2001,18: 321-330.
[32]Baquero-Bernal  A, Latif M,   Legutke S. On dipole-like variability of sea surface temperature in the tropical Indian Ocean[J]. Journal of Climate, 2002,15(11):1 358-1 368.
[33]Marsland  S  J, Latif M, Legutke S. Variability of the Antarctic Circumpolar Wave in a coupled ocean-atmosphere model[J]. Ocean Dynamics, 2003,53(4):323-331. 
[34]Gonzalez-Ruoco F, von Storch H, Zorita E. Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years[J]. Geophysical Research Letters, 2003, 30: 2 114-2 116.
[35]Usoskin I, Solanki S, Schuessler M, et al. Millennium-scale sunspot number reconstruction: Evidence for an unusual active sun since the 1940s[J]. Physical  Review  Letters, 2003, 91:art. 211101.
[36]Robock A, Free M. The volcanic record in ice cores for the past 2000 years[A]. In: Jones P, Bradley R, Jouzel J,eds. Climatic Variation and Forcing Mechanisms of the Last 2000 Years[C]. New York: Springer-Verlag, 1996.533-546.
[37]Etheridge D, Steele L P, Langenfelds R L, et al. Morgan Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn[J]. Journal of Geophysical Research, 1996, 101:4 115-4 128.
[38]Blunier T, Chappellaz J A, Schwander J, et al. Variations in atmospheric methane concentration during the Holocene epoch[J]. Nature, 1995, 374: 46-49.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要