地球科学进展 ›› 2007, Vol. 22 ›› Issue (1): 26 -32. doi: 10.11867/j.issn.1001-8166.2007.01.0026

研究论文 上一篇    下一篇

长江口盐沼滩面发育对有机碳深度分布的制约
陈庆强,孟 翊,周菊珍,顾靖华,胡克林   
  1. 华东师范大学河口海岸学国家重点实验室,上海 200062
  • 收稿日期:2006-07-18 修回日期:2006-11-21 出版日期:2007-01-10
  • 通讯作者: 陈庆强 (1969-),男,山东新泰人,副教授,主要从事海洋沉积学及生物地球化学的教学与研究.E-mail:qqchen@sklec.ecnu.edu.cn E-mail:qqchen@sklec.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“长江口盐沼湿地土壤剖面碳循环机制及其主控因子研究”(编号:40202032);国家重点基础研究发展计划项目“中国典型河口—近海陆海相互作用及其环境效应”(编号:2002CB412403);上海市高等学校青年科学基金项目“长江口湿地生态系统土壤碳循环模型研究”(编号:2000QN14)共同资助.

Constraints for Distribution of Soil Organic Carbon with Depth due to Evolution of the Salt Marsh in the Yangtze River Estuary

CHEN Qing-qiang, MENG Yi, ZHOU Ju-zhen, GU Jing-hua, HU Ke-lin   

  1. State Key Laboratory of Estuary and Coastal Research,East China Normal University,Shanghai 200062,China
  • Received:2006-07-18 Revised:2006-11-21 Online:2007-01-10 Published:2007-01-10

通过对长江口崇明东滩高潮滩、中潮滩以及光滩柱状样的有机碳含量与碳稳定同位素组成(δ13C)、粒度组成等的测定,研究盐沼有机碳深度分布特征与形成机制。结果表明,盐沼土壤颗粒有机碳(POC)主要赋存于粒径小于0.016 mm的颗粒中,POC含量对粒径在0.002~0.004 mm区间的颗粒含量变化最敏感,说明盐沼POC主要来自长江径流悬移质,这与有机碳稳定同位素结果一致。土壤POC含量与不同粒径区间颗粒含量相关关系表明,高潮滩与中潮滩柱样的泥沙级配较为接近;光滩柱样POC含量与不同粒径区间颗粒含量相关关系特征与高、中潮滩柱样的基本类似,主要不同表现在粒径大于0.016 mm的粗颗粒,这很可能受控于盐沼不同高程部位动力沉积过程。盐沼植被对高、中潮滩柱样POC的贡献相当可观,个别层段高达55.6%;植被对土壤POC的贡献受到滩面过程的明显制约。滩面动力沉积过程形成盐沼垂向上独特的沙、泥纹层构造,其优良的封堵效能显著影响土壤有机碳的垂向分布。盐沼滩面动力沉积过程是塑造有机碳深度分布特征的关键因素。

Distribution of particulate organic carbon (POC) with depth was studied to elucidate the mechanism for vertical distribution of salt marsh POC, based on analyses of POC content, stable carbon isotope and grain size for samples of three cores from high marsh, middle marsh and bare flat of Chongmingdongtan Salt Marsh in the Yangtze River Estuary. Results indicated that soil particulate organic carbon existed mainly in the fine grains with sizes less than 0.016 mm, and POC content was susceptible to changes of contents of grains in size between 0.002 mm and 0.004 mm. It was inferred that salt marsh POC originated mainly from suspended particulate matter of the Yangtze River, based on results of stable carbon isotope analysis and the correlations between POC content and contents of fine grains in different size fractions (<0.016 mm) for soil samples from different cores. The correlations between soil POC contents and contents of grains in different size fractions indicated that grain size characteristics of samples from high marsh were similar to those of samples from middle marsh. Samples from bare flat were similar in part to those from high marsh and middle marsh in the correlations between soil POC content and contents of grains in different size fractions, with main differences shown by grains in size fractions greater than 0.016 mm. This might be due to the dynamic depositional processes at locations with different altitudes in the salt marsh. Vegetation provided considerable contributions to soil POC of core samples from high marsh and middle marsh, with the greatest value of 55.6% of soil POC contents in some depth sections, which was controlled predominantly by depositional processes on the tidal flat. The characteristic structure of alternate muddy laminae and sandy laminae originated from dynamic depositional processes on tidal flats, and exerted great influences on the distributions of soil POC with depth, due to the excellent protecting effects of the strata structure on soil POC. The dynamic depositional processes on tidal flats were therefore the key factor constraining the distributions of soil POC with depth.

中图分类号: 

[1]Eswaran H E, Vandenberg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal,1993, 57: 192-194.
[2]Gorham E. The biogeochemistry of northern peatlands and its possible responses to global warming[C]//Woodwell G M, Mackenzie F T, eds. Biotic Feedbacks in the Global Climatic System: Will the Warming Speed the Warming? Oxford, England: Oxford University Press, 1995:169 -187.
[3]Hard J W, Sundquist E T, Stallard R F, et al. Dynamics of soil carbon during deglaciation of the Laurentide ice sheet[J]. Science, 1992, 258: 1 921-1 924.
[4]Mitsch W J, Wu X. Wetlands and global change[C]//Lal R, Kimble J, Levine E, eds. Advances in Soil Science: Soil Management and Greenhouse Effect. Boca Raton, FL: CRC Press/Lewis Publishers, 1995:205-230.
[5]Gorham E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming[J]. Ecological applications, 1991, 1: 182-195.
[6]Mitsch W J, Gossilink J G. Wetlands (the third edition)[M]. New York: John Wiley & Sons, Inc., 2000:261-305.
[7]Connor R F, Chmura G L, Beecher C B. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes[J]. Global Biogeochemical Cycles,2001, 15: 943-954.
[8]Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4):1111, doi:10.1029/2002GB001917.
[9]Choi Y, Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements[J]. Global Biogeochemical Cycles, 2004,18, GB4016, doi:10.1029/2004GB002261.
[10]Ren Mei'e. A study on sedimentation of tidal mudflats of China[J]. Tropical Geography, 1985, 4: 6-14.[任美锷.中国淤泥质潮滩沉积研究的若干问题[J].热带海洋,1985,4:6-14.]
[11]Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of characteristics of scirpus mariqueter community on the benthic macro- invertebrate in a salt marsh of the Changjiang estuary[J]. Acta Ecologica Sinica,2002, 22(3): 326-333.[袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响 [J]. 生态学报, 2002, 22(3): 326-333.]
[12]Yuan Xingzhong, Lu Jianjian. Studies on zoobenthos resources in the islands of the Changjiang estuary[J]. Journal of Natural Resources,2001, 16(1): 37-41. [袁兴中, 陆健健. 长江口岛屿湿地的底栖动物资源研究[J]. 自然资源学报, 2001, 16(1): 37-41.]
[13]GSICI (Group of Shanghai Island Comprehensive Investigation). Report of Shanghai Islands Comprehensive Investigation[R]. Shanghai: Shanghai Scientific & Technological Publisher, 1996:13-19, 22-31, 121-128. [上海市海岛资源综合调查报告编写组. 上海市海岛资源综合调查报告 [R]. 上海: 上海科学技术出版社, 1996:13-19, 22-31, 121-128.]
[14]Yang Shilun, Yao Yanming, He Songlin. Coastal profile shape and erosion-accretion changes of the sediment-islands in the Changjiang river estuary[J]. Oceanologia et Limnologia Sinica,1999, 30(6): 764-769.[杨世伦, 姚炎明, 贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律 [J]. 海洋与湖沼, 1999, 30(6): 764-769.]
[15]Fan Daidu, Li Congxian, Chen Meifa, et al. Quantitative analyses on diastems of thr mudflat deposits in the Yangtze river delta[J]. Marine Geology & Quaternary Geology,2001, 21(4): 1-6. [范代读, 李从先, 陈美发, 等. 长江三角洲泥质潮坪沉积间断的定量分析[J]. 海洋地质与第四纪地质, 2001, 21(4): 1-6.]
[16]He Xiaoqin, Dai Xuerong, Liu Qingyu, et al. Observation and analysis of the process of present-day morphology in the Chongming tidal flat of the Yangtze river estuary[J]. Marine Geology & Quaternary Geology,2004, 24(2): 23-27.[何小勤, 戴雪荣, 刘清玉, 等. 长江口崇明东滩现代地貌过程实地观测与分析[J]. 海洋地质与第四纪地质, 2004, 24(2): 23-27.]
[17]Yang Shilun, Chen Jiyu. The role of vegetation in mud coast processes [J]. Oceanologia et Limnologia Sinica,1994, 25(6): 631-635. [杨世伦, 陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 25 (6): 631-635.]
[18]Meyers P A. Preservation of elmental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114: 289-302.
[19]Smith B N, Epstein S. Two categories of 13C/12C ratios for higher plants[J]. Plant Physiology,1971, 47: 380-384.
[20]Cifuentes L A, Coffin R B, Solorzano L, et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J]. Estuarine, Coastal and Shelf Science,1996, 43: 781-800.
[21]Wu Ying, Zhang Jing, Zhang Zaifeng, et al.Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang river[J].Oceanologia et Limnologia Sinica,2002, 33(5): 546-552. [吴莹, 张经, 张再峰,等.长江悬浮颗粒物中稳定碳氮同位素的季节分布[J]. 海洋与湖沼, 2002, 33(5): 546-552.]
[22]Li Congxian, Wang Ping, Fan Daidu, et al. Tidal flat depositional rhythm and diastem [J]. Marine Geology & Quaternary Geology,1999, 19(2): 11-18.[李从先, 王平, 范代读, 等. 潮汐沉积率与沉积间断[J]. 海洋地质与第四纪地质, 1999, 19(2): 11-18.]

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[6] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[7] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[8] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[9] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[12] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[13] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[14] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[15] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
阅读次数
全文


摘要