地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 567 -580. doi: 10.11867/j.issn.1001-8166.2016.06.0567.

上一篇    下一篇

近岸底层水体低氧沉积记录研究进展
吴伊婧 1( ), 范代读 1, 2,,A; *( ), 印萍 3, 胡虞杨 1   
  1. 1. 同济大学海洋地质国家重点实验室,上海 200092
    2. 长江大学地球科学学院,湖北 武汉 430100
    3.青岛海洋地质研究所,山东 青岛 266071
  • 收稿日期:2016-04-18 修回日期:2016-05-02 出版日期:2016-06-20
  • 通讯作者: 范代读 E-mail:walada@qq.com;ddfan@tongji.edu.cn
  • 基金资助:
    *国家自然科学基金项目“全新世长江口低氧区形成与演化历史及控制机制”(编号:41476031);教育部博士点基金课题“长江口季节性缺氧的沉积记录与演化历史研究”(编号:20130072130003)资助

Research Advances in Sedimentary Records of Coastal Bottom-water Hypoxia

Yijing Wu 1( ), Daidu Fan 1, 2, *( ), Ping Yin 3, Yuyang Hu 1   

  1. 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2.School of Geoscience, Yangtze University, Wuhan 430100, China
    3.Qingdao Institute of Marine Geology, Qingdao 266071, China
  • Received:2016-04-18 Revised:2016-05-02 Online:2016-06-20 Published:2016-06-10
  • Contact: Daidu Fan E-mail:walada@qq.com;ddfan@tongji.edu.cn
  • About author:

    First author:Wu Yijing (1990- ), female, Jiaxing City, Zhejiang Province, Ph. D student. Research areas include marine geology.E-mail:walada@qq.com

    Corresponding author:Fan Daidu (1972- ), male, Datian City, Fujian Province, Professor. Research areas include marine sedimentology.E-mail:ddfan@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Development and evolution history of hypoxia off the Changjiang Estuary in Holocene and controlling mechanism”(No.41476031);Programs Foundation of Ministry of Education of China “Sedimentary records and developing history of seasonal hypoxia off the Changjiang Estuary”(No.20130072130003)

长时间尺度的沉积记录可以提升对近岸低氧形成机制的理解,从而为预报、预测和发展减缓低氧措施等提供必要的依据。综述了近岸低氧发育与演化历史的主要研究进展,尤其侧重于沉积记录的研究。首先按水体受限程度将近岸低氧发育环境划分为半封闭型海盆/海湾和开阔陆架海2类,分别探讨了二者低氧发育的主要特征。其次分析总结了低氧沉积记录的替代性指标,包括对水体氧化还原环境具有较好指示意义的生物学、矿物学和地球化学指标,着重分析了各类替代性指标的适用性。最后对长江口外海域底层水体低氧发生机制与沉积记录的研究现状作了回顾与分析。目前长时间尺度的低氧沉积记录研究仍然较少,鉴于长江口外海域低氧的动态发育特征,提出了多钻孔、多参数结合的研究方案。

Sedimentary records are potential to provide long-term evidence for better understanding the development mechanism of coastal hypoxia, shedding some light on the forecast, prediction and controlling-measure development to mitigate hypoxia. Therefore, recent research advances in the formation mechanism and evolution history of coastal hypoxia were briefly reviewed, specially with focus on sedimentary records and proxy methods. First, marine environments with hypoxia were classified into semi-enclosed marginal sea/gulf and open shelf sea based on the degree of bottom-water circulation and ventilation, and main characteristics for the hypoxic development were discussed respectively. Secondly, the methodology was reviewed in the efficiency by using different proxies to reconstruct hypoxia development history from sediment cores, including redox indicators of sedimentology, biology, mineralogy and geochemistry. Ultimately, recent research advance in hypoxic development mechanism and evolution history off the Changjiang Estuary were summarized. It is worth noting that long-term evolution history has been less studied from long cores. It is therefore suggested that a synthetic methodology involving multi-core comparison with different-proxy interpretation should be employed to study the development history of seasonal hypoxia off the Changjiang Estuary.

中图分类号: 

图1 19世纪50年代以来全球主要近岸低氧区域分布与数量变化 [ 6 ]
暗红点表示低氧区域、深蓝点表示低氧程度得到改善的区域
Fig.1 World-wide distribution and development of coastal hypoxia and variation in the observed numbers since the 1850s [ 6 ]
Dark red and blue denoting hypoxic areas and some hypoxia-alleviated areas
表1 沉积环境的氧化还原条件分类 [ 19 ]
Table 1 Redox classification of the depositional environment [ 19 ]
图2 氧化还原敏感性元素在低氧环境中的自生富集过程(据参考文献[80~89]编绘)
Fig.2 Enrichment procedure of redox sensitive elements under hypoxic condition (modified after references[80~89])
图3 长江口外低氧形成机制示意图
Fig.3 A sketch diagram to show the formation mechanism of seasonal hypoxia off the Changjiang Estuary
图4 长江口低氧范围及中心的时空分布,及其与赤潮、营养盐排海通量的关系 [ 105 , 112 , 125 , 126 ]
Fig.4 Spatiotemporal variation in the hypoxic area and central location off the Changjiang Estuary and its connection with red tide and nutrient discharge [ 105 , 112 , 125 , 126 ]
[1] Diaz R J.Overview of hypoxia around the world[J].Journal of Environmental Quality, 2001, 30(2): 275-281.
[2] Rabalais N N, Diaz R J, Levin L A, et al.Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585-619.
[3] Keeling R F, Körtzinger A, Gruber N.Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229,doi:10.1146/annurev.marine.010908.163855.
[4] Lan Chen, Chen Jing’ an, Zeng Yan, et al. Advances in oxygenation theory and technology in deep lakes[J]. Advances in Earth Science, 2015, 30(10): 1 172-1 181.
[兰晨, 陈敬安, 曾艳, 等. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1 172-1 181.]
[5] World Resource Institute. Washington DC, China, India and(in 2013) Brazil and Works in over 40 Countries on Five Continents.[2016-03-01]. .
URL    
[6] Diaz R J, Rosenberg R.Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5 891): 926-929.
[7] Breitburg D L, Craig J K, Fulford R S, et al.Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management[J]. Hydrobiologia, 2009, 629(1): 31-47.
[8] Gray J S, Wu R S S, Or Y Y. Effects of hypoxia and organic enrichment on the coastal marine environment[J]. Marine Ecology-Progress Series, 2002, 238: 249-279.
[9] Banks J, Ross D J, Keough M J.Short-term (24h) effects of mild and severe hypoxia (20% and 5% dissolved oxygen) on metal partitioning in highly contaminated estuarine sediments[J].Estuarine, Coastal and Shelf Science, 2012, 99: 121-131.
[10] Middelburg J J, Levin L A.Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1 273-1 293.
[11] Naqvi S, Bange H W, Farías L, et al.Marine hypoxia/anoxia as a source of CH4 and N2O[J]. Biogeosciences, 2010, 7(7): 2 159-2 190.
[12] Melzner F, Thomsen J, Koeve W, et al.Future ocean acidification will be amplified by hypoxia in coastal habitats[J]. Marine Biology, 2012, 160(8): 1 875-1 888.
[13] Pena M A, Katsev S, Oguz T, et al.Modeling dissolved oxygen dynamics and hypoxia[J]. Biogeosciences, 2010, 7(3): 933-957.
[14] Irby I D, Friedrichs M A M, Friedrichs C T, et al. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: A multiple model comparison[J]. Biogeosciences, 2016, 13(7): 2 011-2 028.
[15] Turner R E, Rabalais N N, Justic D.Predicting summer hypoxia in the northern Gulf of Mexico: Redux[J]. Marine Pollution Bulletin, 2012, 64(2): 319-324.
[16] Caballero-Alfonso A M, Carstensen J, Conley D J. Biogeochemical and environmental drivers of coastal hypoxia[J]. Journal of Marine Systems, 2015, 141: 190-199,doi:10.1016/j.jmarsys.2014.04.008.
[17] Bianchi T S, DiMarco S F, Cowan J H, et al. The science of hypoxia in the northern Gulf of Mexico: A review[J].Science of the Total Environment, 2010, 408(7): 1 471-1 484.
[18] Gooday A, Jorissen F, Levin L, et al.Historical records of coastal eutrophication-induced hypoxia[J].Biogeosciences, 2009, 6(8): 1 707-1 745.
[19] Tyson R V, Pearson T H.Modern and ancient continental shelf anoxia: An overview[J].Geological Society, London, Special Publications, 1991, 58(1): 1-24.
[20] Zhang J, Gilbert D, Gooday A, et al.Natural and human-induced hypoxia and consequences for coastal areas: Synthesis and future development[J].Biogeosciences, 2010, 7: 1 443-1 467.
[21] Zillén L, Conley D J, Andrén T, et al.Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact[J]. Earth-Science Reviews, 2008, 91(1/4): 77-92.
[22] Gustafsson B G, Schenk F, Blenckner T, et al.Reconstructing the development of Baltic Sea eutrophication 1850-2006[J].Ambio, 2012, 41(6): 534-548.
[23] Carstensen J, Andersen J H, Gustafsson B G, et al.Deoxygenation of the Baltic Sea during the last century[J]. Proceedings of the National Academy of Sciences, 2014, 111(15): 5 628-5 633.
[24] Conley D J, Carstensen J, Aigars J, et al.Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology,2011, 45(16): 6 777-6 783.
[25] Murray J W, Stewart K, Kassakian S, et al.Oxic, suboxic, and anoxic conditions in the Black Sea[C]∥Yanko-Hombach V, Gilbert A S, Panin N, et al, eds. The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Netherlands: Springer, 2007: 1-21.
[26] Nägler T F, Siebert C, Lüschen H, et al.Sedimentary Mo isotope record across the Holocene fresh-brackish water transition of the Black Sea[J].Chemical Geology,2005,219(1/4):283-295.
[27] Lyons T W, Werne J P, Hollander D J, et al.Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J].Chemical Geology,2003,195(1):131-157.
[28] Cooper S R, Brush G S.Long-term history of Chesapeake Bay anoxia[J]. Science,1991,254(5 034):992-996.
[29] Murphy R R, Kemp W M, Ball W P.Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading[J]. Estuaries and Coasts,2011,34(6):1 293-1 309.
[30] Rowe G, Chapman P.Continental shelf hypoxia: Some nagging questions[J]. Gulf of Mexico Science, 2002, 20(2): 153-160.
[31] Wei Qinsheng, Wang Baodong, Chen Jianfang, et al.Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River Estuary[J]. Science in China (Series D), 2015, 45(2):187-206.
[韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学:D辑, 2015, 45(2):187-206.]
[32] Wang Hailong, Ding Pingxing, Shen Jian.Advances in the study on physical mechanism of hypoxia formation in estuary and coastal sea[J].Advances in Marine Science, 2010, 28(1): 115-125.
[王海龙, 丁平兴, 沈健. 河口/近海区域低氧形成的物理机制研究进展[J]. 海洋科学进展, 2010, 28(1): 115-125.]
[33] Chen C C, Gong G C, Shiah F K.Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world[J].Marine Environmental Research, 2007, 64(4): 399-408.
[34] Lin Jun, Yan Qing, Zhu Jianrong, et al.Analysis of thermoclinehypoxia off the Changjiang Estuary in late summer[J].Journal of Fisheries of China, 2014, 38(10): 1 747-1 757.
[林军, 闫庆, 朱建荣, 等. 长江口外海域夏末温跃层与底层水低氧现象研究[J]. 水产学报, 2014, 38(10): 1 747-1 757.]
[35] Morey S L.Export pathways for river discharged fresh water in the northern Gulf of Mexico[J]. Journal of Geophysical Research, 2003, 108(C10): 3 303-3 317.
[36] Belabbassi L.Examination of the Relationship of River Water to Occurrences of Bottom Water with Reduced Oxygen Concentrations in the Northern Gulf of Mexico[D].Texas: Texas A & M University, 2007.
[37] Turner R E, Rabalais N N, Swenson E M, et al.Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995[J]. Marine Environmental Research, 2005, 59(1): 65-77.
[38] Rabalais N N, Turner R E, Gupta B K S, et al. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?[J]. Estuaries and Coasts, 2007, 30(5): 753-772.
[39] Glenn S.Biogeochemical impact of summertime coastal upwelling on the New Jersey Shelf[J]. Journal of Geophysical Research,2004, 109(C12): 1-15.
[40] Helly J J, Levin L A.Global distribution of naturally occurring marine hypoxia on continental margins[J].Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(9): 1 159-1 168.
[41] Grantham B A, Chan F, Nielsen K J, et al.Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific[J].Nature,2004, 429(6 993): 749-754.
[42] Chan F, Barth J, Lubchenco J, et al.Emergence of anoxia in the California Current large marine ecosystem[J]. Science, 2008, 319(5 865): 920-920.
[43] Gilly W F, Beman J M, Litvin S Y, et al.Oceanographic and biological effects of shoaling of the oxygen minimum zone[J].Annual Review of Marine Science, 2013, 5(1): 393-420.
[44] Tremblay N, Abele D.Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems[J]. Marine Ecology, 2016, 37(1): 179-199.
[45] Rabalais N N, Turner, R E, Gupta B K S, et al. Sediments tell the history of eutrophication and hypoxia in the Northern Gulf of Mexico[J].Ecological Applications, 2007, 17(Suppl.5): S129-S143.
[46] Zhao Jun.Comparative Research on Biogeochemistry of Sedimentary Organic Carbon in the Changjiang and Mississippi Estuaries: Using Pigments as Biomarkers[D]. Qingdao: Ocean University of China, 2011.
[赵军. 长江口与密西西比河口沉积有机碳生物地球化学比较研究[D]. 青岛: 中国海洋大学, 2011.]
[47] Ruiz F, Abad M, Bodergat A M, et al.Marine and brackish-water ostracods as sentinels of anthropogenic impacts[J].Earth-Science Reviews, 2005, 72(1): 89-111.
[48] Levin L A, Ekau W, Gooday A J, et al.Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences,2009, 6(10): 2 063-2 098.
[49] Bednaršek N, Harvey C J, Kaplan I C, et al.Pteropods on the edge: Cumulative effects of ocean acidification, warming, and deoxygenation[J]. Progress in Oceanography, 2016, 145: 1-24,doi:10.1016/j.pocean.2016.04.002.
[50] Gooday A J, Jorissen F J.Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings[J]. Annual Review of Marine Science, 2012, 4(1): 237-262.
[51] Gupta B K S, Turner R E, Rabalais N N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers[J]. Geology, 1996, 24(3): 227-230.
[52] Platon E, Gupta B K S. Benthic foraminiferal communities in oxygen-depleted environments of the Louisiana Continental Shelf[C]∥Rabalais N N, Turner R E, eds. Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Washinton DC: American Geophysical Union, 2001: 147-163.
[53] Osterman L E.Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: An indicator of shelf hypoxia[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 17-35.
[54] Strauss J, Grossman E L, Carlin J A, et al.100 years of benthic foraminiferal history on the inner Texas shelf inferred from fauna and stable isotopes: Preliminary results from two cores[J]. Continental Shelf Research, 2012, 38: 89-97,doi:10.1016/j.csr.2012.03.004.
[55] Li X, Bianchi T S, Yang Z, et al.Historical trends of hypoxia in Changjiang River Estuary: Applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3/4): 57-68.
[56] Wakeham S G, Amann R, Freeman K H, et al.Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study[J]. Organic Geochemistry, 2007, 38(12): 2 070-2 097.
[57] Wakeham S G, Turich C, Schubotz F, et al.Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 63: 133-156,doi:10.1016/j.dsr.2012.01.005.
[58] Schmale O, Blumenberg M, Kieβlich K, et al.Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea)[J]. Biogeosciences, 2012, 9(12): 4 969-4 977.
[59] Berndmeyer C, Thiel V, Schmale O, et al.Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)[J]. Organic Geochemistry, 2013, 55: 103-111,doi:10.1016/j.oroggeochem.2012.11.010.
[60] Blumenberg M, Berndmeyer C, Moros M, et al.Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea[J].Biogeosciences, 2013, 10(4): 2 725-2 735.
[61] Didyk B M.Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J].Nature, 1978, 272: 216-222,doi:10.1038/272216ao.
[62] Li Congling.Pristane/phytane ratio in recent marine sediment (sedimentary layer) and its geochemical significance[J].Marine Geology & Quaternary Geology, 1990, 10(4): 77-88.
[李从玲. 近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义[J]. 海洋地质与第四纪地质, 1990, 10(4): 77-88.]
[63] Guo Zhigang, Yang Zuosheng, Chen Zhilin, et al.Source of sedimentary organic matter in the mud areas of the East China Sea shelf[J]. Geochimica, 2001, 30(5): 416-424.
[郭志刚, 杨作升, 陈致林, 等. 东海陆架泥质区沉积有机质的物源分析[J]. 地球化学, 2001, 30(5): 416-424.]
[64] Bogus K A, Zonneveld K A F, Fischer D, et al. The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies[J]. Biogeosciences, 2012, 9: 1 553-1 570.
[65] Rontani J F, Bonin P.Production of pristane and phytane in the marine environment: Role of prokaryotes[J]. Research in Microbiology, 2011, 162(9): 923-933.
[66] Rontani J F, Volkman J K.Phytol degradation products as biogeochemical tracers in aquatic environments[J]. Organic Geochemistry, 2003, 34(1): 1-35.
[67] Sun M Y, Wakeham S G, Aller R C, et al.Impact of seasonal hypoxia on diagenesis of phytol and its derivatives in Long Island Sound[J]. Marine Chemistry, 1998, 62(1): 157-173.
[68] Berner R A.A new geochemical classification of sedimentary environments[J]. Journal of Sedimentary Research, 1981, 51(2): 359-365.
[69] Berner R A.Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
[70] Berner R A, Raiswell R.C/S method for distinguishing freshwater from marine sedimentary rocks[J]. Geology, 1984, 12(6): 365-368.
[71] Rudd J W, Kelly C, Furutani A.The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments[J]. Limnology and Oceanography, 1986, 31(6): 1 281-1 291.
[72] Raiswell R, Buckley F, Berner R A, et al.Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J]. Journal of Sedimentary Research, 1988, 58(5): 812-819.
[73] Zimmerman A R, Canuel E A.A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: Anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1): 117-137.
[74] Wilkin R T, Arthur M A, Dean W E.History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525.
[75] Ding H, Yao S, Chen J.Authigenic pyrite formation and re-oxidation as an indicator of an unsteady-state redox sedimentary environment: Evidence from the intertidal mangrove sediments of Hainan Island, China[J]. Continental Shelf Research, 2014, 78: 85-99.
[76] Chen Shuhui, Li Yun, Hu Zuowei, et al.Genesis, diagnostic role and age significance of glauconites[J]. Acta Petrologica et Mineralogica, 2014, 33(5): 971-979.
[陈淑慧, 李云, 胡作维, 等. 海绿石的成因, 指相作用及其年龄意义[J].岩石矿物学杂志, 2014, 33(5): 971-979.]
[77] Obasi C C, Terry D O, Myer G H, et al.Glauconite composition and morphology, shocked quartz, and the origin of the Cretaceous (?) Main Fossiliferous Layer (MFL) in Southern New Jersey, USA[J]. Journal of Sedimentary Research, 2011, 81(7): 479-494.
[78] Nelsen T A, Blackwelder P, Hood T, et al.Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area[J]. Estuaries, 1994, 17(4): 873-885.
[79] Chen Lirong.Sedimentary Mineralogy of the China Sea[M]. Beijing: China Ocean Press, 2008.
[陈丽蓉. 中国海沉积矿物学[M]. 北京: 海洋出版社, 2008.]
[80] Tribovillard N P, Algeo T J, Lyons T, et al.Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[81] Algeo T J, Maynard J B.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology,2004,206(3/4): 289-318.
[82] Helz G R, Adelson J M.Trace element profiles in sediments as proxies of dead zone history: Rhenium compared to molybdenum[J]. Environment Science & Technology, 2013, 47(3): 1 257-1 264.
[83] Crusius J, Calvert S, Pedersen T, et al.Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1): 65-78.
[84] Morford J L, Emerson S.The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 735-1 750.
[85] Adelson J M, Helz G R, Miller C V.Reconstructing the rise of recent coastal anoxia: Molybdenum in Chesapeake Bay sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 237-252.
[86] Chappaz A, Gobeil C, Tessier A.Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 170-184.
[87] Rosenthal Y, Lam P, Boyle E A, et al.Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995, 132(1/4): 99-111.
[88] Zheng Y, Anderson R F, van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4 165-4 178.
[89] Thomson J, Jarvis I, Green D R H, et al.Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial[J]. Geochimica et Cosmochimica Acta, 1998,62(4): 643-656.
[90] Algeo T J, Lyons T W.Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1-23.
[91] Wirth S B, Gilli A, Niemann H, et al.Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: The example of meromictic Lake Cadagno (Swiss Alps)[J]. Geochimica et Cosmochimica Acta, 2013, 120: 220-238,doi:10.1016/j.gca.2013.06.017.
[92] Algeo T J, Maynard J B.Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872-887.
[93] Barling J, Anbar A D.Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3/4): 315-329.
[94] Nägler T F, Neubert N, Böttcher M E, et al.Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas[J]. Chemical Geology, 2011, 289(1/2): 1-11.
[95] Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
[96] Weyer S, Anbar A D, Gerdes A, et al.Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
[97] Bopp C J, Lundstrom C, Johnson T M, et al.Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, USA[J]. Environmental Science & Technology, 2010, 44(15): 5 927-5 933.
[98] Montoya-Pino C, Weyer S, Anbar A D, et al.Global enhancement of ocean anoxia during oceanic anoxic event 2: A quantitative approach using U isotopes[J].Geology, 2010, 38(4): 315-318.
[99] Andersen M B, Romaniello S, Vance D, et al.A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
[100] Noordmann J, Weyer S, Montoya-Pino C, et al.Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway)[J]. Chemical Geology, 2015, 396: 182-195.
[101] Wijsman J W M, Middelburg J J, Herman P M J, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 2001, 74(4): 261-278.
[102] Calvert S E, Thode H G, Yeung D, et al.A stable isotope study of pyrite formation in the Late Pleistocene and Holocene sediments of the Black Sea[J].Geochimica et Cosmochimica Acta, 1996, 60(7): 1 261-1 270.
[103] Chen Jiyu.The Report of Comprehensive Investigation of Shanghai Coastal Zone and Tidal Flat Resources[M]. Shanghai: Shanghai Science and Technology Press, 1988.
[陈吉余. 上海市海岸帶和海涂资源綜合调查报告[M]. 上海: 上海科学技术出版社, 1988.]
[104] Li Daoji, Zhang Jing, Huang Daji, et al.Oxygen depletion off the Changjiang (Yangtze River) Estuary[J].Science in China(Series D), 2002, 32(8): 686-694.
[李道季, 张经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学:D辑, 2002, 32(8): 686-694.]
[105] Zhu Z Y, Zhang J, Wu Y, et al.Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition[J].Marine Chemistry, 2011, 125(1/4): 108-116.
[106] Guo Zhigang, Yang Zuosheng, Chen Zhilin, et al.Source of sedimentary organic matter in the mud areas of the East China Sea shelf[J].Geochimica, 2001, 30(5): 416-424.
[郭志刚, 杨作升, 陈致林, 等. 东海陆架泥质区沉积有机质的物源分析[J]. 地球化学, 2001, 30(5): 416-424.]
[107] Wang Baodong, Zhan Run, Zang Jiaye.Distributions and transportation of nutrients in Changjiang River Estuary and its adjacent sea areas[J].Acta Oceanologica Sinica, 2002, 24(1): 53-58.
[王保栋, 战闰, 藏家业. 长江口及其邻近海域营养盐的分布特征和输送途径[J]. 海洋学报, 2002, 24(1): 53-58.]
[108] Chung S W, Jan S, Liu K K.Nutrient fluxes through the Taiwan Strait in spring and summer 1999[J].Journal of Oceanography, 2001, 57(1): 47-53.
[109] Liu Wei, Song Jinming, Yuan Huamao, et al.Pathway and flux of inputting chemical substances from the Kuroshio to the East China Sea[J].Advances in Earth Science, 2015, 30(8): 904-914.
[刘伟, 宋金明, 袁华茂, 等. 黑潮化学物质输入东海的途径与通量[J]. 地球科学进展, 2015, 30(8): 904-914.]
[110] Zhang J, Liu S M, Ren J L, et al.Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J].Progress in Oceanography, 2007, 74(4): 449-478.
[111] Zhao Baoren, Ren Guangfa, Cao Deming, et al.Characteristics of the ecological environment in upwelling area adjacent to the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2001, 32(3): 327-333.
[赵保仁, 任广法, 曹德明, 等. 长江口上升流海区的生态环境特征[J]. 海洋与湖沼, 2001, 32(3): 327-333.]
[112] Wang B D.Hydromorphological mechanisms leading to hypoxia off the Changjiang Estuary[J]. Marine Environmental Research, 2009, 67(1): 53-58.
[113] Wang B D, Wei Q S, Chen J F, et al.Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Marine Environmental Research, 2012, 77: 1-5,doi:10.1016/j.marenvres.2011.12.007.
[114] Zhang Xiaodong, Zhai Shikui, Xu Shumei, et al.The “Grain Size Effect” of redox sensitive elements in the sediments in the hypoxia zone of the Changjiang Estuary[J]. Journal of Ocean University of Qingdao, 2005, 35(5): 868-874.
[张晓东, 翟世奎, 许淑梅, 等. 长江口外缺氧区沉积物中氧化还原敏感性元素的“粒控效应”[J]. 中国海洋大学学报:自然科学版, 2005, 35(5): 868-874.]
[115] Xu Shumei, Zhai Shikui, Zhang Aibin, et al.Distribution and environment significance of redox sensitive trace elements of the Changjiang Estuary hypoxia zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759-766.
[许淑梅, 翟世奎, 张爱滨, 等. 长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J]. 沉积学报, 2007, 25(5): 759-766.]
[116] Zou Jianjun, Shi Xuefa, Li Naisheng, et al.Early diagenetic processes of redox sensitive elements in Yangtze Estuary[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(1): 31-42.
[邹建军, 石学法, 李乃胜, 等. 长江口氧化还原敏感元素的早期成岩过程[J]. 地球科学——中国地质大学学报, 2010, 35(1): 31-42.]
[117] Wang Pinxian.Foraminifera and Ostracodes in Surface Sediment of the East China Sea[M]. Beijing: China Ocean Press, 1988.
[汪品先. 东海地质中的有孔虫和介形虫[M]. 北京: 海洋出版社, 1988.]
[118] Wang F, Liu J, Qiu J, et al.Historical evolution of hypoxia in East China Sea off the Changjiang (Yangtze River) Estuary for the last ~13,000 years: Evidence from the benthic foraminiferal community[J]. Continental Shelf Research, 2014, 90: 151-162,doi:10.1016/j.csr.2014.02.013.
[119] Cai Qingfang, Wang Feifei, Yin Ping, et al.Benthic foraminiferal assemblages in the hypoxic area of Yangtze River Estuary[J]. Marine Geology Frontiers, 2013, 29(6): 44-51.
[蔡庆芳, 王飞飞, 印萍, 等. 长江口低氧区底栖有孔虫组合[J]. 海洋地质前沿, 2013, 29(6): 44-51.]
[120] Cai Qingfang.Holocene Palaeoenvironment and Hypoxic Events of Yangtze River Estuary Hypoxia Area[D]. Qingdao: Ocean University of China, 2013.
[蔡庆芳. 长江口低氧区全新世以来古环境演化及古低氧事件研究[D]. 青岛: 中国海洋大学, 2013.]
[121] Li C, Yang S Y, Lian E G, et al. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: Iron cycle and paleoenvironmental implications[J]. Quaternary International, 2016, in press.
[122] Groeneveld J, Filipsson H L.Mg/Ca and Mn/Ca ratios in benthic foraminifera: The potential to reconstruct past variations in temperature and hypoxia in shelf regions[J]. Biogeosciences, 2013, 10(7): 5 125-5 138.
[123] Xu Shumei.The Distribution and Environmental Significance of Redox Sensitive Elements off the Changjiang Estuary Hypoxia Zone and Its contiguous Sea Area[D]. Qingdao: Ocean University of China, 2005.
[许淑梅. 长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义[D]. 青岛: 中国海洋大学, 2005.]
[124] Feng Xuwen.Sedimentary Records of Hypoxia in the Changjiang Estuary Over Last 100 Years[D]. Hangzhou: Zhejiang University, 2009.
[冯旭文. 长江口百年来底层水体季节性缺氧在沉积物中的记录[D]. 杭州: 浙江大学, 2009.]
[125] Liu Lusan, Li Zicheng, Zhou Juan, et al.Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters[J]. Environmental Science, 2011, 32(9): 2 497-2 504.
[刘录三, 李子成, 周娟, 等. 长江口及其邻近海域赤潮时空分布研究[J]. 环境科学, 2011, 32(9): 2 497-2 504.]
[126] Huang Jiangchan.Distributions and Changes of Nutrient Concentration in the East China Sea in Late 50 Years[D]. Qingdao: Ocean University of China, 2011.
[黄江婵. 近50年东海海水中营养盐时空分布特征[D]. 青岛: 中国海洋大学, 2011.]
[1] 谭先锋, 冉天, 罗龙, 王佳, 梁迈, 陈青, 况昊. 滨浅湖环境中“砂—泥”沉积记录及成岩作用系统——以济阳坳陷古近系孔店组为例[J]. 地球科学进展, 2016, 31(6): 615-633.
[2] 陈庆强,孟翊,周菊珍,顾靖华,胡克林. 长江口盐沼滩面发育对有机碳深度分布的制约[J]. 地球科学进展, 2007, 22(1): 26-32.
阅读次数
全文


摘要